

Learning Django Web Development

Table of Contents
Learning Django Web Development
Credits
About the Authors
About the Reviewers
www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?
Free access for Packt account holders

Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Introduction to Django
Why web development in the first place?
What has changed in web development
The MVC pattern in web development

Multilingual support
Why Django?

Inside Django
Django is mature
Batteries included
Tight integration between the component and modular framework
Object-relational mapper
Clean URL design
Automatic administration interface
Advanced development environment
What's new in Django 1.6 and 1.7

Supported databases
What you will learn using this book
Summary

2. Getting Started
Installing the required software

Installing Python
Installing Python on Windows
Installing Python on Unix/Linux

part0003.xhtml#aid-2RHM1
part0004.xhtml#aid-3Q281
part0005.xhtml#aid-4OIQ1
part0006.xhtml#aid-5N3C1
part0007.xhtml#aid-6LJU1
part0007.xhtml#ch00lvl1sec01
part0007.xhtml#ch00lvl2sec01
part0007.xhtml#ch00lvl2sec02
part0008.xhtml#aid-7K4G1
part0008.xhtml#ch00lvl1sec02
part0009.xhtml#aid-8IL21
part0010.xhtml#aid-9H5K1
part0011.xhtml#aid-AFM61
part0012.xhtml#aid-BE6O1
part0013.xhtml#aid-CCNA1
part0013.xhtml#ch00lvl2sec03
part0013.xhtml#ch00lvl2sec04
part0013.xhtml#ch00lvl2sec05
part0013.xhtml#ch00lvl2sec06
part0014.xhtml#aid-DB7S1
part0014.xhtml#ch01lvl1sec08
part0015.xhtml#aid-E9OE1
part0016.xhtml#aid-F8901
part0016.xhtml#ch01lvl2sec07
part0017.xhtml#aid-G6PI1
part0017.xhtml#ch01lvl2sec08
part0017.xhtml#ch01lvl3sec01
part0017.xhtml#ch01lvl3sec02
part0017.xhtml#ch01lvl3sec03
part0017.xhtml#ch01lvl3sec04
part0017.xhtml#ch01lvl3sec05
part0017.xhtml#ch01lvl3sec06
part0017.xhtml#ch01lvl3sec07
part0017.xhtml#ch01lvl3sec08
part0018.xhtml#aid-H5A41
part0019.xhtml#aid-I3QM1
part0020.xhtml#aid-J2B81
part0021.xhtml#aid-K0RQ2
part0021.xhtml#ch02lvl1sec15
part0021.xhtml#ch02lvl2sec09
part0021.xhtml#ch02lvl3sec09
part0021.xhtml#ch02lvl3sec10

Installing Python on Mac OS X
Installing virtualenv
Installing Django

Django compatibility with operating systems – Windows versus Linux
Installing Django on Windows
Installing Django on Unix/Linux and Mac OS X

Installing a database system
Creating your first project

Creating an empty project
Setting up the database
Launching the development server

Summary
3. Code Style in Django

Django coding style
Understanding indentation in Python

Doing indentation right – do we need four spaces per indentation level?
The importance of blank lines

Importing a package
Grouping imported packages

Naming conventions in Python/Django
Using IDE for faster development
Setting up your project with the Sublime text editor
Setting up the PyCharm IDE
The Django project structure
Best practices – using version control

Git – the latest and most popular version control tool
How Git works
Setting up your Git
Branching in Git

Setting up the database
Launching the development server
Faster web development

Minimal Bootstrap
The Django way
Manual installation of Bootstrap

Summary
4. Building an Application Like Twitter

A word about Django terminology
Setting up a basic template application

Creating a virtual environment
Installing Django

Creating Django's template structure of the project
Setting up the basic Twitter Bootstrap for the application
URLs and views – creating the main page

part0021.xhtml#ch02lvl3sec11
part0021.xhtml#ch02lvl2sec10
part0021.xhtml#ch02lvl2sec11
part0021.xhtml#ch02lvl3sec12
part0021.xhtml#ch02lvl3sec13
part0021.xhtml#ch02lvl3sec14
part0021.xhtml#ch02lvl2sec12
part0022.xhtml#aid-KVCC2
part0022.xhtml#ch02lvl2sec13
part0022.xhtml#ch02lvl2sec14
part0022.xhtml#ch02lvl2sec15
part0023.xhtml#aid-LTSU1
part0024.xhtml#aid-MSDG2
part0024.xhtml#ch03lvl1sec18
part0024.xhtml#ch03lvl2sec16
part0024.xhtml#ch03lvl3sec15
part0024.xhtml#ch03lvl3sec16
part0024.xhtml#ch03lvl2sec17
part0024.xhtml#ch03lvl3sec17
part0024.xhtml#ch03lvl2sec18
part0025.xhtml#aid-NQU21
part0026.xhtml#aid-OPEK1
part0027.xhtml#aid-PNV61
part0028.xhtml#aid-QMFO2
part0029.xhtml#aid-RL0A1
part0029.xhtml#ch03lvl2sec19
part0029.xhtml#ch03lvl3sec18
part0029.xhtml#ch03lvl3sec19
part0029.xhtml#ch03lvl3sec20
part0030.xhtml#aid-SJGS1
part0031.xhtml#aid-TI1E1
part0032.xhtml#aid-UGI01
part0032.xhtml#ch03lvl2sec20
part0032.xhtml#ch03lvl3sec21
part0032.xhtml#ch03lvl3sec22
part0033.xhtml#aid-VF2I1
part0034.xhtml#aid-10DJ41
part0034.xhtml#ch04lvl1sec28
part0035.xhtml#aid-11C3M1
part0035.xhtml#ch04lvl2sec21
part0036.xhtml#aid-12AK82
part0036.xhtml#ch04lvl2sec22
part0037.xhtml#aid-1394Q2
part0038.xhtml#aid-147LC1

Introduction to class-based views
Django settings for the mytweets project
Putting it all together – generating user pages

Familiarization with the Django models
Relationships in models

Many-to-one relationships
One-to-one relationships
Many-to-many relationships

Models – designing an initial database schema
Django's user objects
Creating a URL
Templates – creating a template for the Main Page

Summary
5. Introducing Hashtags

The hashtag data model
Django forms

Designing the tweet post form
Creating a tag page
Summary

6. Enhancing the User Interface with AJAX
AJAX and its advantages
Using an AJAX framework in Django
Using the open source jQuery framework

The jQuery JavaScript framework
Element selectors
jQuery methods
Hiding and showing elements
Accessing CSS properties and HTML attributes
Manipulating HTML documents
Traversing the document tree
Handling events
Sending AJAX requests
What next?

Implementing the searching of tweets
Implementing a searching

Implementing the live searching of tweets
Editing a tweet in place without loading a separate page

Implementing bookmark editing
Implementing in-place editing of bookmarks

Autocompletion of hashtags while submitting a tweet
Summary

7. Following and Commenting
Letting users follow another user

The UserFollowers data model

part0039.xhtml#aid-1565U1
part0040.xhtml#aid-164MG2
part0041.xhtml#aid-173721
part0041.xhtml#ch04lvl2sec23
part0041.xhtml#ch04lvl2sec24
part0041.xhtml#ch04lvl3sec23
part0041.xhtml#ch04lvl3sec24
part0041.xhtml#ch04lvl3sec25
part0042.xhtml#aid-181NK2
part0042.xhtml#ch04lvl2sec25
part0042.xhtml#ch04lvl2sec26
part0042.xhtml#ch04lvl2sec27
part0043.xhtml#aid-190861
part0044.xhtml#aid-19UOO2
part0044.xhtml#ch05lvl1sec38
part0044.xhtml#ch05lvl2sec28
part0045.xhtml#aid-1AT9A2
part0046.xhtml#aid-1BRPS1
part0047.xhtml#aid-1CQAE1
part0048.xhtml#aid-1DOR01
part0048.xhtml#ch06lvl1sec42
part0049.xhtml#aid-1ENBI1
part0050.xhtml#aid-1FLS42
part0050.xhtml#ch06lvl2sec29
part0050.xhtml#ch06lvl3sec26
part0050.xhtml#ch06lvl3sec27
part0050.xhtml#ch06lvl3sec28
part0050.xhtml#ch06lvl3sec29
part0050.xhtml#ch06lvl3sec30
part0050.xhtml#ch06lvl3sec31
part0050.xhtml#ch06lvl3sec32
part0050.xhtml#ch06lvl3sec33
part0050.xhtml#ch06lvl3sec34
part0051.xhtml#aid-1GKCM2
part0051.xhtml#ch06lvl2sec30
part0052.xhtml#aid-1HIT82
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#ch06lvl2sec31
part0053.xhtml#ch06lvl2sec32
part0054.xhtml#aid-1JFUC2
part0055.xhtml#aid-1KEEU1
part0056.xhtml#aid-1LCVG2
part0056.xhtml#ch07lvl1sec50
part0056.xhtml#ch07lvl2sec33

The user login model
Adding or removing the follower

Displaying the most followed user
Summary

8. Creating an Administration Interface
Customizing the administration interface
Customizing listing pages
Overriding administration templates
Users, groups, and permissions

User permissions
Group permissions
Using permissions in views

Organizing content into pages – pagination
Summary

9. Extending and Deploying
Sending invitation e-mails to friends

The invitation data model
Handling activation links

Internationalization (i18n) – offering the site in multiple languages
Marking strings as translatable
Creating translation files
Enabling and configuring the i18n system

Caching – improving the performance of your site during high traffic
Enabling caching
Configuring caching

Caching the whole site
Caching specific views

Unit testing – automating the process of testing your application
The test client
Testing the registration view

Deploying Django
The production web server

Summary
10. Extending Django

Custom template tags and filters
Class-based generic views
Contributed sub-frameworks
Flatpages

Humanize
Sitemap
Cross-site request forgery protection

The message system
The subscription system
User scores

part0056.xhtml#ch07lvl2sec34
part0056.xhtml#ch07lvl2sec35
part0057.xhtml#aid-1MBG21
part0058.xhtml#aid-1NA0K1
part0059.xhtml#aid-1O8H61
part0059.xhtml#ch08lvl1sec53
part0060.xhtml#aid-1P71O2
part0061.xhtml#aid-1Q5IA1
part0062.xhtml#aid-1R42S1
part0062.xhtml#ch08lvl2sec36
part0062.xhtml#ch08lvl2sec37
part0062.xhtml#ch08lvl2sec38
part0063.xhtml#aid-1S2JE2
part0064.xhtml#aid-1T1401
part0065.xhtml#aid-1TVKI2
part0065.xhtml#ch09lvl1sec59
part0065.xhtml#ch09lvl2sec39
part0065.xhtml#ch09lvl2sec40
part0066.xhtml#aid-1UU542
part0066.xhtml#ch09lvl2sec41
part0066.xhtml#ch09lvl2sec42
part0066.xhtml#ch09lvl2sec43
part0067.xhtml#aid-1VSLM1
part0067.xhtml#ch09lvl2sec44
part0067.xhtml#ch09lvl2sec45
part0067.xhtml#ch09lvl3sec35
part0067.xhtml#ch09lvl3sec36
part0068.xhtml#aid-20R682
part0068.xhtml#ch09lvl2sec46
part0068.xhtml#ch09lvl2sec47
part0069.xhtml#aid-21PMQ1
part0069.xhtml#ch09lvl2sec48
part0070.xhtml#aid-22O7C1
part0071.xhtml#aid-23MNU1
part0071.xhtml#ch10lvl1sec65
part0072.xhtml#aid-24L8G1
part0073.xhtml#aid-25JP21
part0074.xhtml#aid-26I9K1
part0074.xhtml#ch10lvl2sec49
part0074.xhtml#ch10lvl2sec50
part0074.xhtml#ch10lvl2sec51
part0075.xhtml#aid-27GQ61
part0076.xhtml#aid-28FAO1
part0077.xhtml#aid-29DRA1

Summary
11. Database Connectivity

SQL versus NoSQL
SQL databases

MySQL – open source
PostgreSQL

NoSQL databases
MongoDB
CouchDB
Redis

Setting up a database system
Setting up MySQL

Installing MySQL in Linux – Debian
Installing the MySQL plugin for Python

Migration and the need for migration
The new features in Django migration

Backend support
How to do migrations?

How migrations know what to migrate
The migration file
Django with NoSQL

The single-page application project – URL shortener
MongoEngine

Connecting MongoDB with Django
Authentication in Django
Storing sessions

Summary
12. Using Third-party Packages

Diving into the world of open source
What is an open source software?
What's the difference between open source and other software?

Using SocialAuth in Django projects
How OAuth works
Implementing social OAuth
Creating a Twitter application

Building REST APIs in Django
Using Django Tastypie

Implementing a simple JSON API
Summary

13. The Art of Debugging
Logging
Debugging

The Django debug toolbar
Installing the Django debug toolbar

part0078.xhtml#aid-2ACBS1
part0079.xhtml#aid-2BASE1
part0079.xhtml#ch11lvl1sec73
part0079.xhtml#ch11lvl2sec52
part0079.xhtml#ch11lvl3sec37
part0079.xhtml#ch11lvl3sec38
part0079.xhtml#ch11lvl2sec53
part0079.xhtml#ch11lvl3sec39
part0079.xhtml#ch11lvl3sec40
part0079.xhtml#ch11lvl3sec41
part0080.xhtml#aid-2C9D02
part0080.xhtml#ch11lvl2sec54
part0080.xhtml#ch11lvl3sec42
part0080.xhtml#ch11lvl3sec43
part0080.xhtml#ch11lvl2sec55
part0080.xhtml#ch11lvl3sec44
part0080.xhtml#ch11lvl2sec56
part0080.xhtml#ch11lvl2sec57
part0080.xhtml#ch11lvl3sec45
part0080.xhtml#ch11lvl2sec58
part0080.xhtml#ch11lvl2sec59
part0081.xhtml#aid-2D7TI2
part0081.xhtml#ch11lvl2sec60
part0081.xhtml#ch11lvl3sec46
part0081.xhtml#ch11lvl3sec47
part0081.xhtml#ch11lvl3sec48
part0082.xhtml#aid-2E6E41
part0083.xhtml#aid-2F4UM1
part0083.xhtml#ch12lvl1sec77
part0083.xhtml#ch12lvl2sec61
part0083.xhtml#ch12lvl2sec62
part0084.xhtml#aid-2G3F82
part0084.xhtml#ch12lvl2sec63
part0084.xhtml#ch12lvl2sec64
part0084.xhtml#ch12lvl2sec65
part0085.xhtml#aid-2H1VQ1
part0085.xhtml#ch12lvl2sec66
part0085.xhtml#ch12lvl3sec49
part0086.xhtml#aid-2I0GC1
part0087.xhtml#aid-2IV0U2
part0087.xhtml#ch13lvl1sec81
part0088.xhtml#aid-2JTHG2
part0088.xhtml#ch13lvl2sec67
part0088.xhtml#ch13lvl3sec50

IPDB – interactive way of busting bugs
Summary

14. Deploying Django Projects
The production web server
The production database
Turning off the debug mode
Changing configuration variables
Setting error pages
Django on cloud

EC2
Google Compute Engine
The open hybrid cloud application platform by Red Hat
Heroku
Google Application Engine

Summary
15. What's Next?

AngularJS meets Django
Django search with Elasticsearch

Installing an Elasticsearch server
Communication between Elasticsearch and Django

Creating an Elasticsearch index
Feeding the index with data
Retrieving search results from the index

Summary
Index

part0089.xhtml#aid-2KS221
part0090.xhtml#aid-2LQIK1
part0091.xhtml#aid-2MP362
part0091.xhtml#ch14lvl1sec85
part0092.xhtml#aid-2NNJO1
part0093.xhtml#aid-2OM4A1
part0094.xhtml#aid-2PKKS1
part0095.xhtml#aid-2QJ5E1
part0096.xhtml#aid-2RHM02
part0096.xhtml#ch14lvl2sec68
part0096.xhtml#ch14lvl2sec69
part0096.xhtml#ch14lvl2sec70
part0096.xhtml#ch14lvl2sec71
part0096.xhtml#ch14lvl2sec72
part0097.xhtml#aid-2SG6I1
part0098.xhtml#aid-2TEN42
part0098.xhtml#ch15lvl1sec92
part0099.xhtml#aid-2UD7M2
part0099.xhtml#ch15lvl2sec73
part0099.xhtml#ch15lvl3sec51
part0099.xhtml#ch15lvl4sec01
part0099.xhtml#ch15lvl4sec02
part0099.xhtml#ch15lvl4sec03
part0100.xhtml#aid-2VBO81
part0101.xhtml

Learning Django Web Development

Learning Django Web Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1150615

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-440-4

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Sanjeev Jaiswal

Ratan Kumar

Reviewers

Michael Giuliano

Danijel Pančić

Martin Pernica

Vikash Verma

Commissioning Editor

Julian Ursell

Acquisition Editors

Nikhil Karkal

Larissa Pinto

Content Development Editor

Arun Nadar

Technical Editor

Abhishek R. Kotian

Copy Editors

Brandt D'mello

Neha Vyas

Project Coordinator

Nikhil Nair

Proofreader

Safis Editing

Indexer

Mariammal Chettiyar

Production Coordinator

Nilesh R. Mohite

Cover Work

Nilesh R. Mohite

About the Authors

Sanjeev Jaiswal is a computer graduate with 5 years of industrial experience. He
basically uses Perl and GNU/Linux for his day-to-day work. He also teaches Drupal
and WordPress CMS to bloggers. He first developed an interest in web application
penetration testing in 2013; he is currently working on projects involving
penetration testing, source code review, and log analysis, where he provides the
analysis and defense of various kinds of web-based attacks.

Sanjeev loves teaching technical concepts to engineering students and IT
professionals and has been teaching for the last 6 years in his leisure time. He
founded Alien Coders (http://www.aliencoders.org), based on the learning through
sharing principle for computer science students and IT professionals in 2010, which
became a huge hit in India among engineering students.

He usually uploads technical videos on YouTube under the Alien Coders tag. He has
got a huge fan base at his site because of his simple but effective way of teaching
and his philanthropic nature toward students. You can follow him on Facebook at
http://www.facebook.com/aliencoders and on Twitter at @aliencoders.

He wrote Instant PageSpeed Optimization , Packt Publishing , and looks forward to
authoring or reviewing more books for Packt Publishing and other publishers.

Ratan Kumar is a computer science and engineering graduate with more than a year
of start-up experience. He received the Technical Excellence Memento from the
Association of Computer Engineering Students (ACES), Cochin University of Science
and Technology.

When he was a product engineer at Profoundis, he worked on an international
project based on services using Django. He was also part of the Microsoft
accelerator program with Profoundis that was responsible for building the product
iTestify, which was built using Django.

He then moved to Tracxn!, an organization that works on building platforms that can
help venture capitalists, investment banks, and corporate developers find new and
interesting start-ups in their investment sector. As a software developer and
engineer, he majorly contributed to the development of the core product platform
of Tracxn using Python for the initial scraping work, such as building cron scrappers
to crawl millions of pages daily, cleaning them up, and analyzing them.

He also built the company's first product, which is called Tracxn Extension—a
Chrome extension using AngularJS. He contributed to the Tracxn product platform
using Grails as the framework. He also worked on Bootstrap—a frontend framework
—to design the home page of tracxn.com.

http://www.aliencoders.org
http://www.facebook.com/aliencoders
http://tracxn.com

About the Reviewers

Michael Giuliano has been programming software in various languages and
technologies for the past 15 years. Having used Python in the fields of web services,
machine learning, and big data since 2008, he finds it to be one of the most
versatile, elegant, and productive programming languages.

Michael is currently based in London, where he leads the Python development team
at Zoopla Property Group Plc.

Danijel Pančić is a JavaScript ninja and a passionate Django enthusiast. He is
currently working at Bitstamp as a senior developer. He also works on various
projects, including online games, and experiments with new approaches and
techniques in search of better ways to achieve the desired results. You can find him
at http://www.panco.si/.

Martin Pernica is currently a lead programmer and a cofounder of a new game
studio called Soulbound Games in Czech Republic. He started programming very
young on old PCs and, after that, he started working mainly as a web developer on
PHP, Python, and Ruby for various companies. After some years of web
development, Martin switched to the game development industry and started his
own game studio. He also started teaching at local universities on mobile, web, and
game development. He always tries to look under the hood of problems and
challenges and then solves and optimizes them, which is still his passion.

Vikash Verma is a young and enthusiastic software professional who has had a wide
exposure to open source technologies. His experience involves both client-side
programming and server-side programming through Python, Django, and many
other demanding technologies.

He has been a vital part of interesting projects from start-ups to leading IT
companies as an individual leader. He has experience in the fields of data analytics,
web crawling, web scraping, web application development, automation, ETL, and
many more technical tracks.

I would like to thank my family and peers who always inspired me to be a go-getter.
Not to mention the support and motivation I get from my soul mate, Smriti, who
ensures that my work and life are in perfect balance with each other.

http://www.panco.si/

www.PacktPub.com

Support files, eBooks, discount offers,
and more

For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at
www.PacktPub.com and as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at <service@packtpub.com> for more
details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.PacktPub.com

Preface

Django, written in Python, is a web application framework designed to build
complex web applications quickly without any hassle. It loosely follows the MVC
pattern and adheres to the Don't Repeat ourself principle, which makes a database-
driven application efficient and highly scalable, and is by far the most popular and
mature Python web framework.

This book is a manual that will help you build a simple yet an effective Django web
application. It starts by introducing Django to you and teaches you how to set it up
and code simple programs. You will then learn to build your first Twitter-like
application. Later on, you will be introduced to hashtags, Ajax (to enhance the user
interface), and tweets. You will then move on to create an administration interface,
learn database connectivity, and use third-party libraries. Then, you will learn to
debug and deploy Django projects and will also get a glimpse of Django with
AngularJS and Elasticsearch. By the end of this book, you will be able to leverage
the Django framework to develop a fully functional web application with minimal
effort.

What this book covers

Chapter 1, Introduction to Django , gives you an introduction to MVC web
development frameworks and the history of Django and explains why Python and
Django are the best tools to use to achieve the aim of this book.

Chapter 2, Getting Started , shows you how to set up our development environment
on Unix/Linux, Windows, and Mac OS X. We will also see how to create our first
project and connect it to a database.

Chapter 3, Code Style in Django , covers all the basic topics that you need to follow
for building a website, such as coding practices for better Django web development,
which IDE you should use, and version control.

Chapter 4, Building an Application Like Twitter , takes you through a tour of the main
Django components and develops a working prototype for your Twitter application.

Chapter 5, Introducing Hashtags , teaches you how to design the algorithm to build a
hashtag model and the mechanism to use a hashtag in your post.

Chapter 6, Enhancing the User Interface with AJAX , will help you enhance the UI
experience using Ajax with Django.

Chapter 7, Following and Commenting , shows you how to create login, logout, and
registration page templates. It will also show you how to allow another user to
follow you and how to display the most followed user.

part0014.xhtml#aid-DB7S1
part0021.xhtml#aid-K0RQ2
part0024.xhtml#aid-MSDG2
part0034.xhtml#aid-10DJ41
part0044.xhtml#aid-19UOO2
part0048.xhtml#aid-1DOR01
part0056.xhtml#aid-1LCVG2

Chapter 8, Creating an Administration Interface , shows you the features of
administrator interface using Django's inbuilt features and how we can show tweets
in a customized way with a sidebar or pagination enabled.

Chapter 9, Extending and Deploying , prepares your application for deployment into
a production environment by utilizing various features of the Django framework. It
also shows you how to add support for multiple languages, improve performance by
caching, automate testing, and configure the project for a production environment.

Chapter 10, Extending Django , speaks about how to improve the various aspects of
your application, mainly performance and localization. It also teaches you how to
deploy your project on a production server.

Chapter 11, Database Connectivity , covers the various forms of database
connectivity, such as MySQL, NoSQL, PostgreSQL, and so on, which is required for
any database-based application.

Chapter 12, Using Third-party Packages , talks about open source and how to use and
implement open source third-party packages in your project.

Chapter 13, The Art of Debugging , shows you how to log and debug your code for
better and efficient coding practice.

Chapter 14, Deploying Django Projects , shows you how to move a Django project
from development to a production environment and the things that need to be
taken care of before you go live.

Chapter 15, What's Next? , will take you to the next level where you will be
introduced to the two most important and preferred components, AngularJS and
Elasticsearch, used in the Django project.

part0059.xhtml#aid-1O8H61
part0065.xhtml#aid-1TVKI2
part0071.xhtml#aid-23MNU1
part0079.xhtml#aid-2BASE1
part0083.xhtml#aid-2F4UM1
part0087.xhtml#aid-2IV0U2
part0091.xhtml#aid-2MP362
part0098.xhtml#aid-2TEN42

What you need for this book

For this book, you will need the latest (preferably) Ubuntu/Windows/Mac operation
system running on your PC/laptop with Python version 2.7.X installed.

In addition to this, you need Django 1.7.x and any one of your favorite text editors,
such as Sublime Text editor, Notepad++, Vim, Eclipse, and so on.

Who this book is for

This book is for web developers who want to get started with Django for web
development. Basic knowledge of Python programming is required, but no
knowledge of Django is expected.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The username variable is the owner of the tweets that we want to see."

A block of code is set as follows:

#!/usr/bin/env python
import os
import sys
if __name__ == "__main__":
 os.environ.setdefault("DJANGO_SETTINGS_MODULE",
"django_mytweets.settings")
 from django.core.management import
execute_from_command_line
 execute_from_command_line(sys.argv)

Any command-line input or output is written as follows:

 Python 2.7.6 (default, Mar 22 2014, 22:59:56)

 [GCC 4.8.2] on linux2

 Type "help", "copyright", "credits" or "license" for more
information.

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " In that
link, we will find download button, after clicking on download, click on Download
Bootstrap ."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and
mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you have purchased. If
you purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book
in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com

If you have a problem with any aspect of this book, you can contact us at

<questions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Introduction to Django

Welcome to version 2.0 of Development with Django!

Django is a web development framework, and web development is a skill. To master
any skill one can follow the famous "10,000 hours" rule, which says that if you
practice anything for that amount of time you will certainly become an expert at it.
But that's a lot of time, and without a proper plan, this can go wrong. Terribly wrong.

So, is there any better way to achieve your goal? Yes! Break the skill you want to
learn into smaller subskills and then master them one at a time. (Programmers call
this the "divide and conquer" rule.) You will need to identify the most important
subskills by researching them. The more the frequent mentions of the subskill, the
more important it becomes to master.

As you have decided to learn a new skill, as the author of this book, I request that
you make a commitment, that you will stick with this book in the early frustrating
hours. Frustration happens when you are learning a new thing, and trust me on this:
when you feel it's too simple, you are doing it right.

In this chapter, we will cover the following topics:

Why web development in the first place?
What has changed in web development
The MVC pattern in web development
Why Django
Inside Django

Why web development in the first
place?

A website makes the first impression about the company or product directly on a
global audience. Every startup now has a website, which helps to pitch their idea to
their potential clients or investors.

Everything is online now, so instead of just sitting and watching the change, why not
participate and learn to code it? Learning web development is one of the most
valuable investments you can make with your time. It will not only benefit you by
getting you a better job, but you will also be able to code your idea into a prototype
in a very simple and straightforward manner.

Must-have ingredients for web development include user interface and user
experience, but they are unfortunately out of the scope of this book.

What has changed in web development

Web development has made great progress during the last few years. Some of the
improvements are listed as follows:

JavaScript : Evolved from writing complex selectors to manipulating
Document Object Model (DOM). Libraries such as jQuery and AngularJs
have made frontend dynamics much simpler. JavaScript has even evolved to
build a production-ready server-side framework called node.js .
Browsers : Evolved from being as simplistic as breaking the page across
browsers to now intelligently restoring the connection, telling you which tab
is playing music, or flawlessly rendering a real-time game.
Open source : Using code written by someone else has finally become
preferable than writing your own code. This helped a lot of projects to stop
reinventing the wheel, Django being one of the best examples.
API as spinal cord : Web technologies today might not be the same
tomorrow, or data might not be represented in the same way or in the same
place tomorrow. In other words, more devices will come with different screen
sizes. Therefore, its always best to have text separated from visuals.
User Interface : In the past, the precious time of the development team was
consumed by User Interface design. But frameworks such as Bootstrap and
Foundation have made web development a lot easier.
Agile development : Moving fast in the development cycle is acceptable to
most startup companies. The complete requirement is never asked for at the
beginning of the software development cycle. Therefore, continuous
customer or stakeholder involvement is very important. The Django
framework is the most suitable framework for this kind of development. As
Django's slogan says, " the web framework for perfectionists with deadlines ".
Evolution of cloud computing : This has played a significant role at the
hosting end of web applications and enables faster, more reliable, and
cheaper solutions for getting online.
Birth of NoSQL : Cutting costs much further, NoSQL gave freedoms such as
Store it Now, Find The Value Later and Store Anything Together to
developers being cloud friendly and more fault tolerant.

The MVC pattern in web development

In this book, you will learn about employing a Model-View-Controller (MVC) web
framework called Django, which is written in Python , a powerful and popular
programming language.

MVC works on the idea of separate presentation. The idea behind separated
presentation is to make a clear division between domain objects that model our
perception of the real world and presentation objects that are the user interface (
UI) elements we see on the screen. Domain objects should be completely self-
contained and should work without reference to the presentation or data-handling
logic (controller). They should also be able to support multiple presentations,
possibly simultaneously.

The benefits of this pattern are obvious. With it, designers can work on the interface
without worrying about data storage or management. And developers are able to
program the logic of data handling without getting into the details of presentation.
As a result, the MVC pattern quickly found its way into web languages, and serious
web developers started to embrace it over previous techniques.

This book emphasizes on utilizing Django and Python to create a Web 2.0
microblogging web application with many common features found in today's Web
2.0 sites. The book follows a tutorial style to introduce concepts and explain
solutions to problems. It is not meant to be a reference manual for Python or
Django, for both have plenty of resources already. The book only assumes working
knowledge of standard web technologies (HTML and CSS) and the Python
programming language. Django, on the other hand, will be explained as we build
features throughout the chapters, until we realize our goal of having a working Web
2.0 application.

Multilingual support

Django supports multilingual websites through its built-in internationalization
system. This can be very valuable for those working on websites with more than one
language. The system makes translating the interface a very simple task.

So, to conclude, Django provides a set of integrated and mature components, with
excellent documentation, at http://www.djangoproject.com/documentation/.

Thanks to its large community of developers and users, there has never been a
better time to start learning a web development framework!

http://www.djangoproject.com/documentation/

Why Django?

Since the spread of the MVC pattern into web development, and unlike most of the
other languages, Python has enjoyed quite a few choices when it comes to web
frameworks. Although choosing one from many can be confusing at first, having
several competing frameworks can only be a good thing for the Python community.

Django is one of the available frameworks for Python, so the question is: what sets
it apart to become the topic of this book?

First of all, Django provides a set of tightly integrated components. All of these
components are developed by the Django team itself. Django was originally
developed as an in-house framework to manage a series of news-oriented websites.
Later, its code was released on the Internet and the Django team continued its
development using the open source model. Because of its roots, Django's
components were designed for integration, reusability, and speed from the start.

Django's database component, the Object-relational Mapper (ORM), provides a
bridge between the data model and the database engine. It supports a large set of
database systems, and switching from one engine to another is a matter of changing
a configuration file. This gives the developer great flexibility if a decision is made to
change from one database engine to another. If you are in trouble, you can find the
driver (binary Python package) here: http://www.lfd.uci.edu/~gohlke/pythonlibs/.

In addition, Django provides a neat development environment. It comes with a
lightweight web server for development and testing. When debugging mode is
enabled, Django provides very thorough and detailed error messages with a lot of
debugging information. All of this makes isolating and fixing bugs very easy.

Django supports multilingual websites through its built-in internationalization
system. This can be very valuable for those working on websites with more than one
language. The system makes translating the interface a very simple task.

The standard features expected of a web framework are all available in Django.
These include the following:

A template and text-filtering engine with simple but extensible syntax
A form generation and validation API
An extensible authentication system
A caching system for speeding up the performance of applications
A feed framework for generating RSS feeds

Even though Django does not provide a JavaScript library to simplify working with
Ajax, choosing one and integrating it with Django is a straightforward matter, as we
will see in later chapters.

http://www.lfd.uci.edu/~gohlke/pythonlibs/

So, to conclude, Django provides a set of integrated and mature components with
excellent documentation, thanks to its large community of developers and users.
With Django available, there has never been a better time to start learning a web
development framework!

Inside Django

We will mention some important reasons why we use Django for better web
development. Some of the most important features are explained in the following
subsections.

Django is mature

Many corporations are directly using Django in their production and with constant
contributions from developers around the world. Some famous sites include
Pinterest and Quora . It has established itself as the perfect web development
framework.

Batteries included

Django follows Python's batteries included philosophy, which means Django comes
with many extra features and options that are important in solving common
problems faced during web development.

Tight integration between the component and modular framework

Django is very flexible in terms of its integration with their party module. The
chances of there existing a popular project (for example, mongoDB in database
domain or SocialAuth in OpenID main) that does have an Appliaction Program
Interface (API) or complete plugin for Django integration are very few.

Object-relational mapper

This is one of the most important parts of the Django project. Django's database
component, the ORM, provides a bridge between the data model and the database
engine. The ORM layer provides features such as encapsulation, portability, safety,
and expressiveness to Django's Modal Class , which are mapped to the configured
database of choice.

Clean URL design

The URL system in Django is very flexible and powerful. It lets you define patterns
for the URLs in your application and to define Python functions to handle each
pattern.

This enables developers to create URLs that are both human-friendly (avoiding URL
ending patterns such as .php, .aspx, and so on) and search engine-friendly.

Automatic administration interface

Django comes with an administration interface that is ready to be used. This
interface makes the management of your application's data a breeze. It is also
highly flexible and customizable.

Advanced development environment

In addition, Django provides a neat development environment. It comes with a
lightweight web server for development and testing. When the debugging mode is
enabled, Django provides very thorough and detailed error messages with a lot of
debugging information. All of this makes isolating and fixing bugs very easy.

What's new in Django 1.6 and 1.7

With the latest release, version 1.6, Django has brought some major changes and a
few of them are as follows:

Python 3 is officially supported with this release, which means it is stable and
can be used in production.
The layout is simple. New defaults have been added, the Django Admin
template has been added by default, and the Sites package has been
removed.
Clickjacking prevention has been added.
The default Database is SQLite3.
As old APIs are deprecated, the biggest change is that the transactions have
been improved. The DB layer auto-commit is enabled by default.
The DB connection in this release is persistant. Until Django 1.5, a new
connection was made for every HTTP request, but from 1.6, the same
connection will be reused between requests.
Time zone defaults to UTC.
Simple application integration.
Scalable.
Powerful configuration mechanism.
There is no need to have a models.py file if you don't have a model.
A new method has been added for its subclasses.
It allows a cursor to be used as a context manager.
Many features have been added for internationalization, form, and file upload.
It has a better feature to avoid CSRF.
Apart from these, a binary field has been introduced, as have HTML 5 input
fields (e-mail, URL, and number).

You can read the newly added features in detail here:
https://docs.djangoproject.com/en/1.7/releases/1.7/.

https://docs.djangoproject.com/en/1.7/releases/1.7/

Supported databases

Django has a great and powerful respect for data. Model the data correctly, and the
rest of the site will just fall into place. With the convention that Django was
designed for relational database, unofficial NoSQL implementation exists for
Django as well. Here is the list of relational databases that Django supports:

SQL : SQLite, MySQL, and PostgreSQL.
SQLite : This is the default database for Django applications and is mainly
used for testing purposes.
PostgreSQL : This is an open source, widely used RDBS. We will build our
microblogging example based on this.
Note

MySQL and PostgreSQL are the two most common databases used in the
Django community, and PostgreSQL is the most popular in the Django
community.

NoSQL : How about having a single table for your data, whether it contains
user's information or their comments, and so on? In other words, how about
having no rules for the structure of inserted data or nesting data, like Articles
with subdocument array with comments? Sound strange? Yes, it is. In the early
days, people were using the one and only relational database concept, but
since the dawn of the cloud computing era, programmers love to implement
NoSQL architecture for every possible single project. It doesn't store and
doesn't follow any normal forms. You can't use joins, but there are many other
advantages of using it.

App Engine, MongoDB, Elasticsearch, Cassandra, and Redis are some famous
NoSQL DBs that Django supports. MongoDB is getting popular among the
Django community these days.
MongoDB : This is an open source, widely used NoSQL document-based
database. We will be using it for creating our second small application for URL
shortener.

In this book, we will mainly deal with three databases from the preceding list, but
implementation of others can be almost identical with minimal configuration
changes.

There are many famous websites powered by Django. Some of them are as follows:

Pinterest : A content sharing service, especially for images and videos
Disqus : A blog comment hosting service
Quora : A question-and-answer based website
Bitbucket : A free code hosting site for Git and mercurial
Mozilla Firefox : The Mozilla support page

What you will learn using this book

This book focuses on building a microblogging web application and adding common
Web 2.0 features to it. Some of these features are as follows:

Creating Django view, model, and controller : This ideally deals with learning
the Django framework, that is, how requests are handled on controllers to
render the view after making the required manipulations with models that are
stored on the database.
Tags and tag clouds : In the microblogging site project, every message will
have a hashtag in it (a tag starting with #). The mapping of these tags will be
dealt with in this section.
Content customization and searching : Searching for messages based on
keywords or hashtags.
Ajax enhancements : Using Ajax for autocomplete during search or tagging,
and making edits in place for saved messages or tags.
Friend networks : Listing all the friends of the profile and calculating other
vital statistics.

Instead of concentrating on teaching various Django features, this book uses a
tutorial style to teach how to implement these features using Django. Thus, it works
as a complementary resource to the official Django documentation, which is freely
available online.

Interested? Great! Prepare for the ride, as I guarantee that it will be both fun and
interesting.

Summary

In this chapter, we have learned why web development is getting an edge and what
has changed in the web technologies domain; how to leverage new web
technologies using the Python and Django frameworks; what Django actually is and
what we can achieve using it; and finally, the different kind of databases that
support Django.

In the next chapter, we will cover the installation of Python and Django on various
operating systems, such as Windows, Linux, and Mac, and setting up our first project
using the Django platform.

Chapter 2. Getting Started

Python and Django are available for multiple platforms. In this chapter, we will see
how to set up our development environment on UNIX/Linux, Windows, and Mac OS
X. We will also see how to create our first project and connect it to a database.

We will cover the following topics in this chapter:

Installing Python
Installing Django
Installing the database system
Creating your first project
Setting up the database
Launching the development server

Installing the required software

Our development environment consists of Python, Django, and a database system.
In the following sections, we will see how to install these software packages.

Installing Python

Django is written in Python, so naturally, the first step in setting up our
development environment is to install Python. Python is available for a variety of
operating systems, and installing Python is no different from installing other
software packages. The procedure, however, depends on your operating system.

For installation, you need to make sure that you get a recent version of Python.
Django requires Python 2.7 or higher. The latest version of Python is 3.4.2 for 3.x and
2.7.9 for 2.x versions.

Please read the section relevant to your operating system for installation
instructions.

Installing Python on Windows

Python has a standard installer for Windows users. Simply head to
https://www.python.org/download/ and download the latest version. Next, double-
click on the .exe or .msi file and follow the installation instructions step by step.
The graphical installer will guide you through the installation process and create
shortcuts to Python executables in the Start menu.

Once done with the installation, we need to add the Python directory to the system
path so that we can access Python while using the Command Prompt. To do so,
follow these steps:

https://www.python.org/download/

1. Open the Control Panel.
2. Double-click on the System and Security icon or text and then look for

System (as seen in Windows 7), as shown in the following screenshot:

3. Click on Advanced System Settings and a pop-up window will appear.
4. Click on the Environment Variables button and a new dialog box will open.
5. Select the Path system variable and edit it.
6. Append the path to where you installed Python as its value (the default path

is usually c:\PythonXX, where XX is your Python version), as shown in the
following screenshot:

If you want to test your installation, open the Run dialog box, type python, and hit
the Enter button. The Python interactive shell should open.

Note

Don't forget to separate the new path from the one before it with a semicolon (;).

Installing Python on Unix/Linux

If you use Linux or another flavor of Unix, chances are that you already have Python
installed. To check, open a terminal, type python, and hit the Enter button. If you
see the Python interactive shell, you already have Python installed. You should get
the following output after typing python in the terminal:

 Python 2.7.6 (default, Mar 22 2014, 22:59:56)

 [GCC 4.8.2] on linux2

 Type "help", "copyright", "credits" or "license" for
more information.

The first line of the output indicates the version installed on your system (2.7.6,
here).

If you receive an error message instead of seeing the preceding output, or have an
old version of Python, please read on.

It is recommended that Unix/Linux users install and update Python through the
system's package manager. Although the actual details vary from system to system,
it won't be any different from installing any other package.

For APT-based Linux distributions, such as Debian and Ubuntu , open a terminal and
type the following:

 $ sudo apt-get update

 $ sudo apt-get install python

If you have Synaptic Package Manager , simply search for Python, mark its package
for installation, and click on the Apply button.

Users of other Linux distributions should check their system documentation for
information on how to use the package manager to install packages.

Installing Python on Mac OS X

Mac OS X comes with Python preinstalled. However, due to Apple's release cycle, it's
often an old version. If you start the Python interactive shell and find a version older
than 2.3, please visit http://www.python.org/download/mac/ and download a newer
installer for your version of Mac OS X.

Now that Python is up and running, we are almost ready. Next, we will install
virtualenv .

Installing virtualenv

With virtualenv you can create an isolated Python environment. It's not much of a
need in the beginning, but it's a lifesaver for dependency management (for
example, if one of your web applications requires one version of the library and
another application, due to some legacy or compatibility issues, requires another
version of the same library, or if changes made in one library or application break
the rest of the applications).

Virtualenv can be used to avoid such problematic situations. It will create its own
environment so that it will not mess with your global settings. It usually creates its
own directories and shared libraries to make virtualenv work without any external
interference. If you have pip 1.3 or greater, install it globally. You can use the
following command to install virtualenv:

 $ [sudo] pip install virtualenv

http://www.python.org/download/mac/

Once it has been downloaded fully, virtualenv will look like this:

Note

If you have not installed pip yet, you can install it with sudo apt-get install
python-pip.

That's all! Now you can create your virtual environment by using the following
command:

 $ virtualenv ENV

Virtualenv has very detailed online documentation, which you must follow for any
kind of issue faced while using virtualenv. The following lines are an excerpt from
that online documentation:

This creates ENV/lib/pythonX.X/site-packages, where any
libraries you install will go. It also creates ENV/bin/python, which is a
Python interpreter that uses this environment. Anytime you use that
interpreter (including when a script has #!/path/to/ENV/bin/python
in it) the libraries in that environment will be used.

We can find the virtualenv online documentation at
https://pypi.python.org/pypi/virtualenv/1.8.2.

A new virtualenv folder also includes the pip installer, so you can use the
ENV/bin/pip command to install additional packages into the environment.

Note

Activate script : In a newly created virtual environment there will be a
bin/activate shell script. For Windows systems, activate scripts are provided for
CMD and Powershell .

You can read more at:

http://virtualenv.readthedocs.org/en/latest/virtualenv.html

On Unix systems, we can use the following command to activate the virtualenv
script:

 $ source bin/activate

On Windows, we can use the following command to activate the virtualenv script
on the command prompt:

https://pypi.python.org/pypi/virtualenv/1.8.2
http://virtualenv.readthedocs.org/en/latest/virtualenv.html

 : > \path\to\env\Scripts\activate

Type deactivate to undo the changes, as shown in the following screenshot:

This changes your $PATH variable.

To know more about activate scripts, such as which environment you are using or
whether you need to activate the script, please visit the following link:

http://virtualenv.readthedocs.org/en/latest/virtualenv.html

Installing Django

Installing Django is very easy, but it depends slightly on your operating system.
Since Python is a platform-independent language, Django has one package that
works everywhere regardless of your operating system.

To download Django, head to http://www.djangoproject.com/download/ and grab
the latest official version. The code in this book is developed on Django 1.7 (the
latest as of this writing), but most of the code should run on later official releases.
Next, follow the instructions related to your platform.

Django compatibility with operating systems – Windows versus
Linux

There are a few points you need to know for when you deal with operating systems.
Many packages and settings need to be tweaked before running Django without
any flaws. Let's take a look at them:

Some Python packages cannot be installed correctly, or at all in Windows; if
they can, they will create a lot of hassle when you do
If you need to deploy your Django application, it makes more sense to use a
Unix-flavored system, simply because 99 percent of the time, your
deployment environment is the same
If your applications are complex, it's easier to get the required dependencies,
be they extensions in Linux, libraries, and so on

http://virtualenv.readthedocs.org/en/latest/virtualenv.html
http://www.djangoproject.com/download/

Installing Django on Windows

After you have downloaded the Django archive, extract it to the C drive and open
the command prompt (from Start | Accessories). Now, change the current
directory to where you extracted Django from by issuing the following command:

 c:\>cd c:\Django-x.xx

Here, x.xx is your Django version.

Next, install Django by running the following command (you will need
administrative privileges for this):

Note

If you do not have a program to handle the .tar.gz files on your system, I
recommend using 7-Zip , which is free and available at http://www.7-zip.org/.

 c:\Django-x.xx>python setup.py install

If, for some reason, the preceding instructions didn't work, you can manually copy
the django folder inside the archive to the Lib\site-packages folder located in
the Python installation directory. This will do the job of running the setup.py
installation command.

The last step is copying the django-admin.py file from Django-
x.xx\django\bin to somewhere in your system path, such as c:\windows or the
folder where you installed Python.

Once done, you can safely remove the c:\Django-x.xx folder because it is no
longer needed.

That's it! To test your installation, open a command prompt and type the following
command:

 c:\>django-admin.py --version

http://www.7-zip.org/

If you see the current version of Django printed on screen, then everything is set.

Installing Django on Unix/Linux and Mac OS X

The installation instructions for all Unix and Linux systems are the same. You need to
run the following commands in the directory where the Django-x.xx.tar.gz
archive is located. These commands will extract the archive and install Django for
you:

 $ tar xfz Django-x.xx.tar.gz

 $ cd Django-x.xx

 $ sudo python setup.py install

The preceding instructions should work on any Unix/Linux system, as well as Mac OS
X. However, it may be easier to install Django through your system's package
manager if it has a package for Django. Ubuntu has one; so to install Django on
Ubuntu, simply look for a package called python-django in Synaptic, or run the
following command:

 $ sudo apt-get install python-django

You can test your installation by running the following command:

 $ django-admin.py --version

If you see the current version of Django printed on screen, then everything is set.

Installing a database system

While Django does not require a database to function, the application we are going
to develop does. So, in the final step of software installation, we are going to make
sure that we have a database system for handling our data.

It's worth noting that Django supports several database engines: MySQL ,
PostgreSQL , MS SQL Server , Oracle , and SQLite . Interestingly, however, you
only need to learn one API in order to use any of these database systems. This is
possible because of Django's database layer that abstracts access to the database
system. We will learn about this later, but, for now, you only need to know that,
regardless of what database system you choose, you will be able to run Django
applications developed in this book (or elsewhere) without modification.

If you have Python 2.7 or higher, you don't need to install anything. Python 2.7
comes with the SQLite database management system contained in a module named
sqlite3. Unlike client-server database systems, SQLite does not require a resident
process in memory and it stores the database in a single file, which makes it ideal for
our development environment.

If you don't have Python 2.7, you can install the Python module for SQLite manually
by downloading it at http://www.pysqlite.org/ (Windows users) or through your
package manager (Unix/Linux).

On the other hand, if you already have another Django-supported database server
installed on your system, you can also use this. We will tell Django what database
system to use by editing a configuration file, as we will see in later sections.

Tip

Don't I need Apache or some other web server?

Django comes with its own web server, which we are going to use during the
development phase because it is lightweight and comes pre-configured for Django.
However, Django does support Apache and other popular web servers, such as light
tpd, nginx, and so on. We will see how to configure Django for Apache when we
prepare our application for deployment later in this book.

The same applies to the database manager. During the development phase, we will
use SQLite because it is easy to set up, but when we deploy the application, we will
switch to a database server such as MySQL.

As I said earlier, regardless of what components we use, our code will stay the same;
Django handles all the communication with the web and database servers for us.

http://www.pysqlite.org/

Creating your first project

Now with the software we need in place, the time has come for the fun part–
creating our first Django project!

If you recall from the Django installation section, we used a command called
django-admin.py to test our installation. This utility is the heart of Django's
project management facilities, as it enables the user to do a range of project
management tasks, including these:

Creating a new project
Creating and managing the project's database
Validating the current project and testing for errors
Starting the development web server

We will see how to use some of these tasks in the rest of this chapter.

Creating an empty project

To create your first Django project, open a terminal (or Command Prompt for
Windows users; that is, Start | Run | cmd), and type the following command. Then,
hit Enter .

 $ django-admin.py startproject django_bookmarks

This command will make a folder named django_bookmarks in the current
directory and create the initial directory structure inside it. Let's see what kind of
files are created:

django_bookmarks/
|-- django_bookmarks
| |-- __init__.py
| |-- settings.py
| |-- urls.py
| `-- wsgi.py
`-- manage.py

Here is a quick explanation of what these files are:

__init__.py: Django projects are Python packages, and this file is required
to tell Python that this folder is to be treated as a package.

A package in Python's terminology is a collection of modules, and they are
used to group similar files together and prevent naming conflicts.
manage.py: This is another utility script used to manage our project. You can
think of it as your project's version of the django-admin.py file. Actually,
both django-admin.py and manage.py share the same backend code.
settings.py: This is the main configuration file for your Django project. In it,
you can specify a variety of options, including the database settings, site
language(s), what Django features need to be enabled, and so on. Various
sections of this file will be explained as we progress with building our
application during the next chapters, but for this chapter, we will only see
how to enter the database settings.
url.py: This is another configuration file. You can think of it as a mapping
between the URLs and Python functions that handle them. This file is one of
Django's powerful features, and we will see how to utilize it in the next
chapter.

When we start writing code for our application, we will create new files inside the
project's folder; so the folder also serves as a container for our code.

Now that you have a general idea of the structure of a Django project, let's
configure our database system.

Setting up the database

In this section, we will start working with setting up the database with various
options and configuration files.

Okay, now that we have a source code editor ready, let's open the settings.py
file in the project folder and see what it contains:

"""
Django settings for django_bookmarks project.

For more information on this file, see
https://docs.djangoproject.com/en/1.7/topics/settings/

For the full list of settings and their values, see
https://docs.djangoproject.com/en/1.7/ref/settings/
"""

Build paths inside the project like this:
os.path.join(BASE_DIR, ...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(__file__))

Quick-start development settings - unsuitable for production
See
https://docs.djangoproject.com/en/1.7/howto/deployment/checklis
t/

SECURITY WARNING: keep the secret key used in production
secret!
SECRET_KEY = ')9c8g--
=vo2*rh$9f%=)=e+@%7e%xe8jptgpfe+(90t7uurfy0'

SECURITY WARNING: don't run with debug turned on in
production!
DEBUG = True

TEMPLATE_DEBUG = True

ALLOWED_HOSTS = []

Application definition

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
)

MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.auth.middleware.SessionAuthenticationMiddle
ware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
)

ROOT_URLCONF = 'django_bookmarks.urls'

WSGI_APPLICATION = 'django_bookmarks.wsgi.application'

Database
https://docs.djangoproject.com/en/1.7/ref/settings/#databases

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

Internationalization
https://docs.djangoproject.com/en/1.7/topics/i18n/

LANGUAGE_CODE = 'en-us'

TIME_ZONE = 'UTC'

USE_I18N = True

USE_L10N = True

USE_TZ = True

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/1.7/howto/static-files/

STATIC_URL = '/static/'

As you may have already noticed, the file contains a number of variables that
control various aspects of the application. Entering a new value for a variable is as
simple as doing a Python assignment statement. In addition, the file is extensively
commented, and comments explain what variables control in detail.

What concerns us now is configuring the database. As mentioned before, Django
supports several database systems, so first of all, we have to specify what database
system we are going to use. This is controlled by the DATABASE_ENGINE variable. If

system we are going to use. This is controlled by the DATABASE_ENGINE variable. If

you have SQLite installed, set the variable to 'sqlite3'. Otherwise, pick the value
that matches your database engine from the comment next to the variable name.

Next is the database name. Keep the database name default, as it is. On the other
hand, if you are using a database server, you need to do the following:

Enter the relevant information for the database: username, password, host,
and port. (SQLite does not require any of these.)
Create the actual database inside the database server, as Django won't do this
by itself. In MySQL, for example, this is done through the mysql command line
utility or phpMyAdmin.

Finally, we will tell Django to populate the configured database with tables.
Although we haven't created any tables for our data yet (and won't do so until the
next chapter), Django requires several tables in the database for some of its
features to function properly. Creating these tables is as easy as issuing the
following command:

 $ python manage.py syncdb

If everything is correct, status messages will scroll on the screen, indicating that
tables are being created. When prompted for the superuser account, enter your
preferred username, email, and password. If, on the other hand, the database is
misconfigured, an error message will be printed to help you troubleshoot the issue.

With this done, we are ready to launch our application.

Tip

Using python manage.py

When running a command that starts with python manage.py, make sure that you
are currently in the project's directory where manage.py is located.

Launching the development server

As discussed before, Django comes with a lightweight web server for developing
and testing applications. This server is pre-configured to work with Django, and,
more importantly, it restarts whenever you modify the code.

To start the server, run the following command:

 $ python manage.py runserver

Next, open your browser and navigate to this URL: http://localhost:8000/.
You should see a welcome message, as shown in the following screenshot:

Congratulations! You have created and configured your first Django project. This
project will be the base on top of which we will build our bookmarking application.
During the next chapter, we will start developing our application, and the page
displayed by the web server will be replaced by something we wrote ourselves!

Note

As you may have noticed, the web server runs on port 8000 by default. If you want
to change the port, you can specify it on the command line by using the following
command:

 $ python manage.py runserver <port number>

Also, the development server is only accessible from the local machine by default. If
you want to access the development server from another machine on your network,
use the following command-line arguments:

 $ python manage.py runserver 0.0.0.0:<port number>

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Summary

In this chapter, we have prepared our development environment, created our first
project, and learned how to launch the Django development server. We learned how
to install Django and virtualenv in Windows and Linux. We learned the basic
mechanisms of how Django settings work and even learned how to install a
database.

We are now ready to start building our social bookmarking application! The next
chapter takes you through a tour of the main Django components and develops a
working prototype for our bookmark sharing application. It's going to be a fun
chapter with many new things to learn, so keep reading!

Chapter 3. Code Style in Django

As you are coming from the Python background, you must already have written lots
of code, and, of course have enjoyed it too.

Python code is easy to maintain and works on both small projects or in solving any
competitive programming contest; you can do either by storing Python code locally
or by storing it in a public folder for easier sharing. But, if you are working on a
collaborative project, especially web development, then it makes everything
different from other traditional coding. This not only needs discipline, like following
the project's code syntax, but you may also end up writing extensive documentation
for your code. While working with any version control tools, such as GIT, your
commit messages (which play an important role in making it easier for other
developers to understand what you have been working on or have completed) also
broadcast the current progress of project.

This chapter will cover all the basic topics which you would require to follow, such as
coding practices for better Django web development, which IDE to use, version
control, and so on.

We will learn the following topics in this chapter:

Django coding style
Using IDE for Django web development
Django project structure
Best practices—using version control
Django rescue team (where to ask Django questions)
Faster web development—using Twitter-Bootstrap

Note

This chapter is based on the important fact that code is read much more often than
it is written. Thus, before you actually start building your projects, we suggest that
you familiarize yourself with all the standard practices adopted by the Django
community for web development.

Django coding style

Most of Django's important practices are based on Python. Though chances are you
already know them, we will still take a break and write all the documented practices
so that you know these concepts even before you begin. Of course, you can come
back to this chapter for a quick look when you are building your projects.

To mainstream standard practices, Python enhancement proposals are made, and
one such widely adopted standard practice for development is PEP8, the style guide
for Python code–the best way to style the Python code authored by Guido van

for Python code–the best way to style the Python code authored by Guido van

Rossum.

The documentation says, "PEP8 deals with semantics and conventions associated
with Python docstrings." For further reading, please visit
http://legacy.python.org/dev/peps/pep-0008/.

Understanding indentation in Python

When you are writing Python code, indentation plays a very important role. It acts as
a block like in other languages, such as C or Perl . But it's always a matter of
discussion amongst programmers whether we should use tabs or spaces, and, if
space, how many–two or four or eight. Using four spaces for indentation is better
than eight, and if there are a few more nested blocks, using eight spaces for each
indentation may take up more characters than can be shown in single line. But,
again, this is the programmer's choice.

The following is what incorrect indentation practices lead to:

 >>> def a():

 ... print "foo"

 ... print "bar"

 IndentationError: unexpected indent

So, which one we should use: tabs or spaces?

Choose any one of them, but never mix up tabs and spaces in the same project or
else it will be a nightmare for maintenance. The most popular way of indention in
Python is with spaces; tabs come in second. If any code you have encountered has a
mixture of tabs and spaces, you should convert it to using spaces exclusively.

Doing indentation right – do we need four spaces per indentation
level?

There has been a lot of confusion about it, as of course, Python's syntax is all about
indentation. Let's be honest: in most cases, it is. So, what is highly recommended is
to use four spaces per indentation level, and if you have been following the two-

http://legacy.python.org/dev/peps/pep-0008/

to use four spaces per indentation level, and if you have been following the two-

space method, stop using it. There is nothing wrong with it, but when you deal with
multiple third party libraries, you might end up having a spaghetti of different
versions, which will ultimately become hard to debug.

Now for indentation. When your code is in a continuation line, you should wrap it
vertically aligned, or you can go in for a hanging indent. When you are using a
hanging indent, the first line should not contain any argument and further
indentation should be used to clearly distinguish it as a continuation line.

Note

A hanging indent (also known as a negative indent) is a style of indentation in which
all lines are indented except for the first line of the paragraph. The preceding
paragraph is the example of hanging indent.

The following example illustrates how you should use a proper indentation method
while writing the code:

 bar = some_function_name(var_first, var_second,

 var_third,
var_fourth)

 # Here indentation of arguments makes them grouped,
and stand clear from others.

 def some_function_name(

 var_first, var_second, var_third,

 var_fourth):

 print(var_first)

 # This example shows the hanging intent.

We do not encourage the following coding style, and it will not work in Python
anyway:

 # When vertical alignment is not used, Arguments on
the first line are forbidden

 foo = some_function_name(var_first, var_second,

 var_third, var_fourth)

 # Further indentation is required as indentation is
not distinguishable between arguments and source code.

 def some_function_name(

 var_first, var_second, var_third,

 var_fourth):

 print(var_first)

Although extra indentation is not required, if you want to use extra indentation to
ensure that the code will work, you can use the following coding style:

 # Extra indentation is not necessary.

 if (this

 and that):

 do_something()

Tip

Ideally, you should limit each line to a maximum of 79 characters. It allows for a + or
– character used for viewing difference using version control. It is even better to
limit lines to 79 characters for uniformity across editors. You can use the rest of the
space for other purposes.

The importance of blank lines

The importance of two blank lines and single blank lines are as follows:

Two blank lines : A double blank lines can be used to separate top-level
functions and the class definition, which enhances code readability.
Single blank lines : A single blank line can be used in the use cases–for
example, each function inside a class can be separated by a single line, and
related functions can be grouped together with a single line. You can also
separate the logical section of source code with a single line.

Importing a package

Importing a package is a direct implication of code reusability. Therefore, always
place imports at the top of your source file, just after any module comments and
document strings, and before the module's global and constants as variables. Each
import should usually be on separate lines.

The best way to import packages is as follows:

 import os

 import sys

It is not advisable to import more than one package in the same line, for example:

 import sys, os

You may import packages in the following fashion, although it is optional:

 from django.http import Http404, HttpResponse

If your import gets longer, you can use the following method to declare them:

 from django.http import (

 Http404, HttpResponse, HttpResponsePermanentRedirect

)

Grouping imported packages

Package imports can be grouped in the following ways:

Standard library imports : Such as sys, os, subprocess, and so on.

 import re

 import simplejson

Related third party imports : These are usually downloaded from the Python
cheese shop, that is, PyPy (using pip install). Here is an example:

 from decimal import *

Local application / library-specific imports : This included the local modules

Local application / library-specific imports : This included the local modules

of your projects, such as models, views, and so on.

 from models import ModelFoo

 from models import ModelBar

Naming conventions in Python/Django

Every programming language and framework has its own naming convention. The
naming convention in Python/Django is more or less the same, but it is worth
mentioning it here. You will need to follow this while creating a variable name or
global variable name and when naming a class, package, modules, and so on.

This is the common naming convention that we should follow:

Name the variables properl y: Never use single characters, for example, 'x' or
'X' as variable names. It might be okay for your normal Python scripts, but
when you are building a web application, you must name the variable properly
as it determines the readability of the whole project.
Naming of packages and modules : Lowercase and short names are
recommended for modules. Underscores can be used if their use would
improve readability. Python packages should also have short, all-lowercase
names, although the use of underscores is discouraged.
Since module names are mapped to file names (models.py, urls.py, and so
on), it is important that module names be chosen to be fairly short as some
file systems are case insensitive and truncate long names.
Naming a class : Class names should follow the CamelCase naming
convention, and classes for internal use can have a leading underscore in their
name.
Global variable names : First of all, you should avoid using global variables,
but if you need to use them, prevention of global variables from getting
exported can be done via __all__, or by defining them with a prefixed
underscore (the old, conventional way).
Function names and method argument : Names of functions should be in
lowercase and separated by an underscore and self as the first argument to
instantiate methods. For classes or methods, use CLS or the objects for
initialization.
Method names and instance variables : Use the function naming rules—
lowercase with words separated by underscores as necessary to improve
readability. Use one leading underscore only for non-public methods and
instance variables.

Using IDE for faster development

There are many options on the market when it comes to source code editors. Some
people prefer full-fledged IDEs, whereas others like simple text editors. The choice
is totally yours; pick up whatever feels more comfortable. If you already use a
certain program to work with Python source files, I suggest that you stick to it as it
will work just fine with Django. Otherwise, I can make a couple of recommendations,
such as these:

SublimeText : This editor is lightweight and very powerful. It is available for
all major platforms, supports syntax highlighting and code completion, and
works well with Python. The editor is open source and you can find it at
http://www.sublimetext.com/
PyCharm : This, I would say, is most intelligent code editor of all and has
advanced features, such as code refactoring and code analysis, which makes
development cleaner. Features for Django include template debugging (which
is a winner) and also quick documentation, so this look-up is a must for
beginners. The community edition is free and you can sample a 30-day trial
version before buying the professional edition.

http://www.sublimetext.com/

Setting up your project with the
Sublime text editor

Most of the examples that we will show you in this book will be written using
Sublime text editor . In this section, we will show how to install and set up the
Django project.

1. Download and installation : You can download Sublime from the download
tab of the site www.sublimetext.com. Click on the downloaded file option to
install.

2. Setting up for Django : Sublime has a very extensive plug-in ecosystem,
which means that once you have downloaded the editor, you can install plug-
ins for adding more features to it.

After successful installation, it will look like this:

Note

http://www.sublimetext.com

Most important of all is Package Control , which is the manager for installing
additional plugins directly from within Sublime. This will be your only manual
installation of the package. It will take care of the rest of the package
installation ahead.

Some of the recommendations for Python development using Sublime are as
follows:

Sublime Linter : This gives instant feedback about the Python code as you
write it. It also has PEP8 support; this plugin will highlight in real time the
things we discussed about better coding in the previous section so that you
can fix them.

Sublime CodeIntel : This is maintained by the developer of SublimeLint .
Sublime CodeIntel have some of advanced functionalities, such as directly go-
to definition, intelligent code completion, and import suggestions.

You can also explore other plugins for Sublime to increase your productivity.

Setting up the PyCharm IDE

You can use any of your favorite IDEs for Django project development. We will use
pycharm IDE for this book. This IDE is recommended as it will help you at the time of
debugging, using breakpoints that will save you a lot of time figuring out what
actually went wrong.

Here is how to install and set up pycharm IDE for Django:

1. Download and installation : You can check the features and download the
pycharm IDE from the following link:

http://www.jetbrains.com/pycharm/

2. Setting up for Django : Setting up pycharm for Django is very easy. You just
have to import the project folder and give the manage.py path, as shown in
the following figure:

http://www.jetbrains.com/pycharm/

The Django project structure

The Django project structure has been changed in the 1.6 release version. Django
(django-admin.py) also has a startapp command to create an application, so it
is high time to tell you the difference between an application and a project in
Django.

A project is a complete website or application, whereas an application is a small,
self-contained Django application. An application is based on the principle that it
should do one thing and do it right.

To ease out the pain of building a Django project right from scratch, Django gives
you an advantage by auto-generating the basic project structure files from which
any project can be taken forward for its development and feature addition.

Thus, to conclude, we can say that a project is a collection of applications, and an
application can be written as a separate entity and can be easily exported to other
applications for reusability.

To create your first Django project, open a terminal (or Command Prompt for
Windows users), type the following command, and hit Enter :

 $ django-admin.py startproject django_mytweets

This command will make a folder named django_mytweets in the current
directory and create the initial directory structure inside it. Let's see what kind of
files are created.

The new structure is as follows:

django_mytweets///
django_mytweets/
manage.py

This is the content of django_mytweets/:

django_mytweets/
__init__.py
settings.py
urls.py
wsgi.py

Here is a quick explanation of what these files are:

django_mytweets (the outer folder): This folder is the project folder.
Contrary to the earlier project structure in which the whole project was kept
in a single folder, the new Django project structure somehow hints that every
project is an application inside Django.

This means that you can import other third party applications on the same
level as the Django project. This folder also contains the manage.py file,
which include all the project management settings.
manage.py: This is utility script is used to manage our project. You can think
of it as your project's version of django-admin.py. Actually, both django-
admin.py and manage.py share the same backend code.

Note

Further clarification about the settings will be provided when are going to
tweak the changes.

Let's have a look at the manage.py file:

#!/usr/bin/env python
import os
import sys
if __name__ == "__main__":
 os.environ.setdefault("DJANGO_SETTINGS_MODULE",
"django_mytweets.settings")
 from django.core.management import
execute_from_command_line
 execute_from_command_line(sys.argv)

The source code of the manage.py file will be self-explanatory once you read
the following code explanation.

 #!/usr/bin/env python

The first line is just the declaration that the following file is a Python file,
followed by the import section in which os and sys modules are imported.
These modules mainly contain system-related operations.

import os
import sys

The next piece of code checks whether the file is executed by the main
function, which is the first function to be executed, and then loads the Django

function, which is the first function to be executed, and then loads the Django

setting module to the current path. As you are already running a virtual
environment, this will set the path for all the modules to the path of the
current running virtual environment.

if __name__ == "__main__":
 os.environ.setdefault("DJANGO_SETTINGS_MODULE",
"django_mytweets.settings")
django_mytweets/ (Inner folder)
__init__.py

Django projects are Python packages, and this file is required to tell Python
that this folder is to be treated as a package. A package in Python's
terminology is a collection of modules, and they are used to group similar files
together and prevent naming conflicts.
settings.py: This is the main configuration file for your Django project. In it,
you can specify a variety of options, including database settings, site
language(s), what Django features need to be enabled, and so on. Various
sections of this file will be explained as we progress with building our
application during the following chapters.

By default, the database is configured to use SQLite Database, which is
advisable to use for testing purposes. Here, we will only see how to enter the
database in the settings file; it also contains the basic setting configuration,
and with slight modification in the manage.py file, it can be moved to
another folder, such as config or conf.

To make every other third-party application a part of the project, we need to
register it in the settings.py file. INSTALLED_APPS is a variable that
contains all the entries about the installed application. As the project grows, it
becomes difficult to manage; therefore, there are three logical partitions for
the INSTALLED_APPS variable, as follows:

DEFAULT_APPS: This parameter contains the default Django installed
applications (such as the admin)
THIRD_PARTY_APPS: This parameter contains other application like
SocialAuth used for social authentication
LOCAL_APPS: This parameter contains the applications that are created
by you

url.py: This is another configuration file. You can think of it as a mapping
between URLs and the Django view functions that handle them. This file is
one of Django's more powerful features, and we will see how to utilize it in
the next chapter.

When we start writing code for our application, we will create new files inside
the project's folder. So, the folder also serves as a container for our code.

Now that you have a general idea of the structure of a Django project, let's
configure our database system.

Best practices – using version control

Version control is a system that remembers all the changes you make to your
projects as you keep progressing. At any point of time, you can see the changes
made to a particular file; over a period of time, you can revert it or edit it further.

It makes much more sense for a project that has multiple contributors, mainly for
those working on the same file concurrently. Version control is a lifesaver because it
keeps records of both the versions of files and allows options such as saving both by
merging or discarding any one copy.

We will be using distributed version control, that is, each developer has a complete
copy of the project (contrary to subversion, where repositories are hosted on a
system server).

Git – the latest and most popular version control tool

Git is a version control tool we will be using for our projects. It is the best available
tool out there for version control and is open source too. Git works well with other
types of files, apart from source code files, life images, PDFs, and so on. You can
download Git from the following URL:

http://git-scm.com/downloads

Most of the modern IDEs already have built-in version control system support; like
PyCharm, Sublime has a plugin that can integrate Git in the working directory. Git
can be initialized form the terminal using the git command, and you can check out
further options provided by it using the git --help command.

How Git works

We, as developers, have a local copy of the project synchronized with a remote
server (often called repository) and can send it to a remote repository. When the
other developer wants to push changes to the remote repository, they have to pull
your changes first. This minimizes chances of any conflict on the central repository
where every developer is in sync. This whole work flow is shown in the next section.

Setting up your Git

Any project can be added to Git for version control to creating a folder into a Git
repository. To do this, use the following commands:

$git init: If you want to copy an existing Git repository, which might be the
case if your friend has already hosted it somewhere on GitHub or Bitbucket ,
use the following command:

http://git-scm.com/downloads

$git clone URL: The URL of the remote repository, like
https://github.com/AlienCoders/web-development.git.

Staging area : The staging area is the place where all your files have to be listed
first before you commit them. In short, staging is needed as an intermediate step,
rather than a direct commit, because, when conflicts occur, they are flagged in the
staging area. Only after the conflicts are resolved can the files be committed.

Let's take a look at the following commands and their uses:

$git add <file-name> or $git add: For adding all files to the staging
area in bulk.
$git status: To know the status of your working directory, which files have
been added, and which files have not been added.
$git diff: To get the status of what is modified and staged, or what is
modified and has not been staged.
$ git commit -m: To commit the changes made, first you have to add them
to the staging area; then, you have to commit them using this command.
$ git rm <file-name>: If you have mistakenly added any file to the
staging area, you can remove it from the staging area by using this command.
$git stash: Git doesn't track the renamed files. In other words, if you have
renamed already staged files, you will have to add them again to the staging
and then commit. You can save the changes by not actually committing to the
repository by using the following command.
$git stash apply: It takes all the current changes and saves it to the stack.
Then, you can continue working with your changes. Once you are in a position
to get your saved changes, you can do so using this command.

Branching in Git

Another concept of version control is branching (Git). A branch is like a path for
your commits, and by default, all commits are made on the master branch. A branch
is mainly used to track the feature in a project. Every feature can be made as branch
to be worked on; once the feature is complete, it can be merged back to the master.

The basic work flow of branch is this: you initially have a master branch and make a
new branch for each new feature. Changes are committed into the new branch, and
once done with the feature, you can merge it back to the master branch. This can be
visually represented as follows:

$git branch: To list an existing branch using Git, we need to use this
command.

https://github.com/AlienCoders/web-development.git

git checkout -b <new-branch-name>: A new branch can be created in
the existing repository using this command. We can see logically how it looks
with the help of the following block diagram:

You will get a message informing you that you have switched to the new
branch. If you want to switch back to the old branch, you can use the following
command:
$git checkout <old-branch-name>: You will see the message Switched
to branch <old-branch-name>.
$git merge <branch-name>: After the feature is complete, you can merge
it to the branch of your choice using this command. This will merge the branch
<branch-name> to your current branch. To sync the changes back to the
<branch-name>, you can check out from your current branch to the branch
<branch-name> and merge again. You can also mark the important points in
your commit history by using tags.
After the commit, you can tag an important commit by using the $git tag -

After the commit, you can tag an important commit by using the $git tag -

a v1.0 command.
To get new changes from the remote server, you can fetch the changes from
Git using the $git fetch command.
To merge the changes directly to your current branch, you can use the $git
pull command.
After you are done with your changes, you can commit and push them to the
remote repository using the $git push command.

Setting up the database

In this section, we will start working with code for the first time. Therefore, we will
have to choose a source code editor to enter and edit code. You can use any of your
favorite source code editors. As mentioned in the previous section, we have used
the Sublime text editor to write code for this book.

OK, now that you have a source code editor ready, let's open settings.py in the
project folder and see what it contains:

Django settings for django_mytweets project.
DEBUG = True
TEMPLATE_DEBUG = DEBUG
ADMINS = (
 # ('Your Name', 'your_email@domain.com'),
)
MANAGERS = ADMINS
DATABASE_ENGINE = '' # 'postgresql_psycopg2', 'postgresql',
 # 'mysql', 'sqlite3' or 'ado_mssql'.
DATABASE_NAME = '' # Or path to database file
 # if using sqlite3.
DATABASE_USER = '' # Not used with sqlite3.
DATABASE_PASSWORD = '' # Not used with sqlite3.
DATABASE_HOST = '' # Set to empty string for localhost.
 # Not used with sqlite3.
DATABASE_PORT = '' # Set to empty string for default.
 # Not used with sqlite3.

There are many more lines in the settings.py file, but we have trimmed the
remaining contents of this file.

As you may have already noticed, the file contains a number of variables that
control various aspects of the application. Entering a new value for a variable is as
simple as doing a Python assignment statement. In addition, the file is extensively
commented, and comments explain what variables control in detail.

What concerns us now is configuring the database. As mentioned before, Django
supports several database systems, so first of all, we have to specify what database
system we are going to use. This is controlled by the DATABASE_ENGINE variable. If
you have SQLite installed, set the variable to sqlite3. Otherwise, pick the value
that matches your database engine from the comment next to the variable name.

Next is the database name. We will choose a descriptive name for your database;
edit DATABASE_NAME and set it to django_mytweetsdb. If you are using SQLite,

edit DATABASE_NAME and set it to django_mytweetsdb. If you are using SQLite,

this is all you need to do. On the other hand, if you are using a database server,
follow these instructions:

Enter the relevant information for the database–the username, password,
host, and port (SQLite does not require any of these).
Create the actual database inside the database server, as Django won't do this
by itself. In MySQL, for example, this is done through the mysql command-
line utility or phpMyAdmin.

After these simple edits, the database section in settings.py now looks like this:

DATABASE_ENGINE = 'sqlite3'
DATABASE_NAME = 'django_mytweetsdb'
DATABASE_USER = ''
DATABASE_PASSWORD = ''
DATABASE_HOST = ''
DATABASE_PORT = ''

Finally, we will tell Django to populate the configured database with tables.
Although we haven't created any tables for our data yet (and we won't do so until
the next chapter), Django requires several tables in the database for some of its
features to function properly. Creating these tables is as easy as issuing the
following command:

 $ python manage.py syncdb

If everything is correct, status messages will scroll on the screen, indicating that
tables are being created. When prompted for the superuser account, enter your
preferred username, e-mail, and password. If, on the other hand, the database is
misconfigured, an error message will be printed to help you troubleshoot the issue.

With this done, we are ready to launch our application.

Note

Using python manage.py

When you run a command that starts with python manage.py, make sure that you
are currently in the project's directory where the manage.py file is located.

Launching the development server

As discussed before, Django comes with a lightweight web server for developing
and testing applications. This server is pre-configured to work with Django, and
more importantly, it restarts whenever you modify the code.

To start the server, run the following command:

 $ python manage.py runserver

Next, open your browser and navigate to this URL: http://localhost:8000/.
You should see a welcome message, as shown in the following screenshot:

Congratulations! You have created and configured your first Django project. This
project will be the basis on top of which we will build our bookmarking application.
In the next chapter, we will start developing our application, and the page displayed
by the web server will be replaced by something we wrote ourselves!

As you may have noticed, the web server runs on port 8000 by default. If you want
to change the port, you can specify it on the command line using the following
command:

 $ python manage.py runserver <port number>

Also, the development server is only accessible from the local machine by default. If
you want to access the development server from another machine on your network,
use the following command line arguments:

 $ python manage.py runserver 0.0.0.0:<port number>

Faster web development

When it comes to web development, one thing which majorly helps the success of
the web project is its user interface and user experience. Although Django takes
care of all the business logic at the backend, there is undoubtedly a need for an
awesome frontend design framework that not only eases the developer's life while
coding, but also enhances the user experience of the whole web project. Thus, we
choose to explain Twitter Bootstrap here.

Minimal Bootstrap

Bootstrap is a complete frontend framework, and it's beyond the scope of this
book to familiarize you with each and every aspect of it. What you must be
wondering is why we would discuss Bootstrap in Django book. You are being told
about a frontend framework. The idea here is to help you build a web application
that you can directly use in production, and which you will be deploying to clouds
such as AWS and Heroku . You need your project to be of a production grade once
you finish this book. Thus, by keeping Bootstrap as simple as possible, you can still
build a great-looking Django web application.

There are many ways to lay out your web pages based on the permutation and
combination. To help you to get an understanding of that, we will take a look at a
few examples.

Wire-framing is the first step in the web development, which means it has to deal
with the location of the content on the page. If you already know the basics of web
designing, this section will make much more sense to you. If not, first do some
reading to get a basic idea of web development. Look up the difference between
div and span, and then everything will make sense to you. You can learn more from
here: https://developer.mozilla.org/en-US/Learn/HTML. Bootstrap basic page wire-
framing is divided into rows and columns; each column is further divided into 12
sections. With these subsections, you can use the permutation to get your layout
designed.

When we see a website from a developer's perspective, the first thing we notice is
the wire-frame being used. For example, when you visit www.facebook.com, you see
your news feed in the center of the page and other important links (such as links to
messages, pages, and groups) on the left-hand side of the page. On the right-hand
side, you see your friends who are available to chat.

The same layout can be imagined in Bootstrap as 2-8-2. The column for the left-hand
side links will be a "2 column", the news feed will be an "8 column", and the chat
section will be a "2 column". This is a basic wire-frame.

Tip

https://developer.mozilla.org/en-US/Learn/HTML
http://www.facebook.com

Remember the sum always has to be 12, as a live fluid grid system in Bootstrap
works on 12-grid column principle for better and flexible layout.

Now, Bootstrap is not just for making a web page responsive–it has many other
components to make web page look better and cleaner.

To use Bootstrap with Django, there are two ways:

The Django way : pip install django-bootstrap3
The Manual way : Downloading the Bootstrap resources and copying them to
a static location

The Django way

If you want to install Bootstrap using a command, then you have to append the
INSTALLED_APPS variable from the settings.py file with bootstrap3.

Here is a sample Django template using this method for a simple HTML form:

{% load bootstrap3 %}
{%# simple HTML form #%}
<form action="action_url">
 {% csrf_token %}
 {% bootstrap_form sample_form %}
 {% buttons %}
 <button type="submit" class="btn btn-primary">
 {% bootstrap_icon "heart" %} SUBMIT
 </button>
 {% endbuttons %}
</form>

Tip

To learn and explore more, you can refer to the following link:

http://django-bootstrap3.readthedocs.org/

Manual installation of Bootstrap

This method is recommended for beginners, but once you are confident, you can
make shortcuts by following the command method.

Here we will learn the basic inclusion for the project files, and the rest will be
covered in the upcoming chapters. Once you have downloaded the Bootstrap from
the online source (http://getbootstrap.com), the unzipped folder structure looks
something like this:

http://django-bootstrap3.readthedocs.org/
http://getbootstrap.com

 |-- css

 | |-- bootstrap.css

 | |-- bootstrap.css.map

 | |-- bootstrap.min.css

 | |-- bootstrap-theme.css

 | |-- bootstrap-theme.css.map

 | `-- bootstrap-theme.min.css

 |-- fonts

 | |-- glyphicons-halflings-regular.eot

 | |-- glyphicons-halflings-regular.svg

 | |-- glyphicons-halflings-regular.ttf

 | `-- glyphicons-halflings-regular.woff

 `-- js

 |-- bootstrap.js

 `-- bootstrap.min.js

There are two types of local file conventions used in Django: one is "Static" and
another is "media". Static files refers to the assets of your project, such as CSS,
JavaScript, and so on. Media files are represented by uploaded files in the project,
mainly consisting of images, video for display or download, and so on.

Adding static files to your project can be done by adding following lines to the
setting.py file:

STATICFILES_DIRS = (
 # put absolute path here as string not relative path.
 # forward slash to be used even in windows.
 os.path.join(
 os.path.dirname(__file__),
 'static',
),
)

Now, all you have to do is to create a folder inside your project directory and copy
all the Bootstrap resources.

Summary

We prepared our development environment in this chapter, created our first project,
set up the database, and learned how to launch the Django development server. We
learned the best way to write code for our Django project and saw the default
Django project structure. We learned about the naming convention, the significance
of blank lines, and which style of import we should use and where.

We saw which editor and which IDE would be better for Python- and Django-based
web development. We learned how to use Git to keep our code updated at the
repository. We learned a bit about Bootstrap to work on frontend development.

The next chapter will take you through a tour of the main Django components and
will help develop a working prototype for our Twitter application. It's going to be a
fun chapter with many new things to learn, so keep reading!

Chapter 4. Building an Application Like
Twitter

In the previous chapters, we learned about better ways to write our code. Keeping
those points in mind, it is high time that we get started with real Django project
development and learn about views, models, and templates.

The first part of each section in this chapter will be about the basics and how things
work in the particular subject it deals with. This will include proper practices,
standard methods, and important terminology.

The second part of each section will be the application of that concept in our
mytweets Django application development. The first parts can be thought of as
chapter descriptions of the subjects and the second parts as exercises in the form of
our Django project, which is really going to be a unique learning experience.

The following topics are covered in this chapter:

A word about Django terminology
Setting up the Basic Template Application
Creating Django's template structure of the project
Setting up the basic bootstrap for the Application
Creating the Main Page
Introduction to class-based views
Django settings for our mytweets project
Generating user pages
Designing an initial database schema
User registration and account management
Creating a template for the Main Page

A word about Django terminology

Django is an MVC framework. However, throughout the code, the controller is called
view , and the view is called template . The view in Django is the component which
retrieves and manipulates the data, whereas the template is the component that
presents data to the user. For this reason, Django is sometimes called a Model
Template View (MTV) framework. This different terminology neither changes the
fact that Django is an MVC framework, nor does it affect how applications are
developed, but keep the terminology in mind to avoid possible confusion if you
have worked with other MVC frameworks in the past.

You can think of this chapter as an in-depth tour of the main Django components.
You will learn how to create dynamic pages using views, how to store and manage
data in the database using models, and how to simplify page generation using

data in the database using models, and how to simplify page generation using

templates.

While learning about these features, you will form a solid idea of how Django
components work and interact with each other. Later chapters will explore these
components more deeply, as we develop more features and add them to our
application.

Setting up a basic template application

Our project is going to be a microblogging site, where there will be a public page for
every user, which will have a timeline of the tweets they have posted.

The first thing that comes to mind after seeing the welcome page of the
development server is to ask how we can change it. To create our own welcome
page, we need to define an entry point to our application in the form of a URL and
tell Django to call a particular Python function when a visitor accesses this URL. We
will write this Python function ourselves and make it display our own welcome
message.

This section basically is a redo of the configuration we did in the previous chapter,
but the intent is to place all the instructions together here so that the project
bootstrapping requires fewer page look-ups.

Creating a virtual environment

We will set up the virtual environment for Django to work properly by using the
following command:

 $ virtualenv django_env

The output will be as follows:

 New python executable in django_env/bin/python

 Installing setuptools, pip...done.

We need to activate the virtual environment now and set up all the environment
variables so that all Python installs will be routed to this environment directory
without affecting other settings:

 $ source django_env/bin/activate

The output will be as follows:

 (django_env)ratan@lenovo:~/code$

Installing Django

Although you have already installed Django, we will do this again because Django
will be managed by virtualenv, which can't be messed up by other projects or
users (or yourself) working elsewhere.

 $pip install django

You may get an error as follows:

 bad interpreter: No such file or directory

If so, create your virtualenv environment within a path without spaces. It is most
likely that, in the path to the location where you have created your virtual
environment, there exists a directory whose name contains a space, for example,
/home/ratan/folder name with space$virtualenv django_env.

If so, change the directory name to something like the following:

/home/ratan/folder_name_with_no_space$virtualenv django_env

We can proceed with the Django installation using the command pip install
django.

The output will be as follows:

 Downloading/unpacking django

 Downloading Django-1.6.5-py2.py3-none-any.whl (6.7MB):
6.7MB downloaded

 Installing collected packages: django

 Successfully installed django

 Cleaning up...

Now, before we move to create our Django application, we will make sure Git is
installed. Use the following command to find out the version of Git that we have
installed:

 $git --version

The output will be as follows:

 git version 1.9.1

This confirms that we have Git installed. Of course you must be wondering whether
we are going to use version control in this project. The answer is yes: as we go along,
we will version-control most of the project files.

Creating Django's template structure of the project

In this section, we will create the structure for the project, for example, creating a
folder called mytweets for our project, installing the required package for our
project, and so on. Run the following command:

 $django-admin.py startproject mytweets

This will create the folder called mytweets, which we will be using as our project
directory. In the current folder, we see two subfolders: environment and
mytweets. The question right now is whether we are going to version control our
environment folder. We are not, because those files are very specific to your current
system. They are not going to help anyone to set up the same environment as ours.
However, there is another way of doing this in Python: by using the pip freeze
command. This actually takes a snapshot of all the current libraries installed in your
Django application, and then you can save that list in a text file and version control

Django application, and then you can save that list in a text file and version control

it. Thus your fellow developer can download the same version of the libraries. That's
really a Pythonic way of doing it, isn't it?

The most common method for you to install the new packages is by using the pip
command. There are the three versions of the pip install command, they are as
follows:

 $ pip install PackageName

This is the default and installs the latest version of the package:

 $ pip install PackageName==1.0.4

Using the == parameter, you can install a specific version of the package. In this case,
that is 1.0.4. Use the following command to install the package with a version
number:

 $ pip install 'PackageName>=1.0.4' # minimum version

Use the above command when you are not sure of the package version you are
going to install but have an idea that you need the minimum version of the library.

It is very easy to use the pip command to install the libraries. You can do this by just
typing the following into the command line:

 $pip install -r requirements.txt

Now we need to freeze the libraries from the current project:

 $pip freeze > requirements.txt

This command freezes the current libraries installed in the project along with the
version number, if specified, and stores them in a file named requirements.txt.

At this stage of our project, pip freeze command will look something like this.

Django==1.6.5
argparse==1.2.1
wsgiref==0.1.2

To install these libraries back to your fresh environment along with the project, we
can run the following command:

 $pip install -r requirements.txt

Thus we can proceed with initializing only our code directory as a Git repository and
changing the current path to $cd mytweets. Execute the following command to
build a Git repository in your project folder:

 $git init

The output will be as follows:

 Initialized empty Git repository in
/home/ratan/code/mytweets/.git/

If we run all commands on a Linux-based system for detailed directory listing we can
see the following output:

...
drwxrwxr-x 7 ratan ratan 4096 Aug 2 16:07 .git/
...

This is the .git folder, which, as by its naming convention (starting with a dot), is
hidden from the normal listing of the directory, that is, the directory where all Git-
related files such as branches, commits, logs, and so on are stored. Deleting that
particular directory will make your directory Git-free (free of version control) and as
normal as any other directory in your current system.

We can add all our current files in the directory to the staging area by using the
following command:

 $git add .

Use the following command for our first commit of the project:

 $git commit -m "initial commit of the project."

The output will be as follows:

[master (root-commit) 597b6ec] initial commit of the project.
5 files changed, 118 insertions(+)
create mode 100755 manage.py
create mode 100644 mytweets/__init__.py
create mode 100644 mytweets/settings.py
create mode 100644 mytweets/urls.py
create mode 100644 mytweets/wsgi.py

The first line (here, its master) says that we are in the master's branch and the
others that follow are the files being committed.

So far, we have set up the basic Django template and added it to our version control.
The same thing can be verified with the following command:

 $git log

The output will be as follows:

 commit 597b6ec86c54584a758f482aa5a0f5781ff4b682

 Author: ratan <mail@ratankumar.org>

 Date: Sat Aug 2 16:50:37 2014 +0530

 initial commit of the project.

Instructions on setting up the author and generating SSH keys for a remote
repository push can be found at the following links:

https://help.github.com/articles/set-up-git

https://help.github.com/articles/generating-ssh-keys

https://help.github.com/articles/set-up-git
https://help.github.com/articles/generating-ssh-keys

Setting up the basic Twitter Bootstrap
for the application

As introduced in the previous chapter, bootstrap is the basic framework for the user
interface design. We will proceed with the second method mentioned, that is, by
manually downloading the bootstrap files and linking them in the static folder.

The method we are skipping means that we are not going to execute the following
command:

 $pip install django-bootstrap3

Detailed documentation for this implementation can be found at http://django-
bootstrap3.readthedocs.org/.

The method that we will be following is that of downloading the bootstrap files and
placing them in the static folder of our project.

To start with bootstrap, we have to start by downloading the static files from the
following official bootstrap web address:

http://getbootstrap.com/

When you visit this link, you will find a download button. After clicking on Download
, click on Download Bootstrap . This will give you the bootstrap resource files in
zipped format. This downloaded file will have a name something like
bootstrap-3.2.0-dist.zip. Extract the content of this zip file. After extraction,
the folder bootstrap-3.2.0-dist will have a structure as follows:

|-- css
| |-- bootstrap.css
| |-- bootstrap.css.map
| |-- bootstrap.min.css
| |-- bootstrap-theme.css
| |-- bootstrap-theme.css.map
| |-- bootstrap-theme.min.css
|-- fonts
| |-- glyphicons-halflings-regular.eot
| |-- glyphicons-halflings-regular.svg
| |-- glyphicons-halflings-regular.ttf
| |-- glyphicons-halflings-regular.woff

http://django-bootstrap3.readthedocs.org/
http://django-bootstrap3.readthedocs.org/
http://getbootstrap.com/

|-- js
|-- bootstrap.js
|-- bootstrap.min.js

Application-specific static files are stored in the static subdirectory within the
application.

Django will also look in any directories listed in the STATICFILES_DIRS setting.
Let's update our project settings to specify a static file directory in the
settings.py file.

We can update our project's setting.py file as follows to use Twitter bootstrap:

STATICFILES_DIRS = (
os.path.join(
os.path.dirname(__file__),
'static',
),
)

Here, the static variable will be the folder we will be keeping our bootstrap files
in. We will create the static folder inside our current project directory and will
copy all bootstrap's unzipped files to that folder.

For development purposes, we will keep most of the settings as there are, for
example, the default database SQLite; we can later move this while deploying our
test application to MySQL or any other database of our choice.

Now, before we actually use bootstrap in our projects, there are some underlying
concepts we must know to understand bootstrap as a front-end framework.

Bootstrap designs the web pages based on the grid system, and there are three
main components of this grid, as follows:

Container : A container is used for giving a base to the whole web page, that
is, generally, all the components of the bootstrap will be direct or nested child
objects of the container. In other words, containers provide the width
constraints on responsive widths. When the screen resolution changes, it's the
container which is changing its width across the device screen. The rows and
columns are percentage based so they get automatically modified.

The container also provides a padding to the contents from browser edges so
that they do not touch the side of the view area. The default padding is 15 px.
You never need another container inside a container. The following image
shows the structure of the container:

Row : A row is placed inside the container and contains the column. The
hierarchy is container | row | column for bootstrap's basic design. The row
also acts like a wrapper for the columns, so in situations where columns are
getting weird due to their default float left property, keep them separately
grouped so that this problem is not reflected outside the row.

Rows have 15 px of negative margin on each side, which pushes them out over
the top of the container's 15 px padding. As a result, they are negated and the
row touches the edge of the container, the negative margin is overlapped by
padding. Thus, the row is not pushed by the container's padding. Never use a
row outside a container.

Column : Columns have a 15 px padding. This means that the columns actually
touch the edge of the row, which is already touching the edge of the
container because of the negation property with the container discussed in
the previous paragraph.

Columns again have the 15 px padding, so the content of the columns is
placed 15 px away from the view edge of a container.

Therefore, we don't need a special first and last column with padding on the
left and right. There is now a consistent 15 px gap across all columns.

Content inside the columns are pushed to the columns location and are also
separated by 30 px of gutter between them. We can use rows inside the
column for nested layouts.

Never use a column outside of a row.

With these points in mind, we can go ahead and design our first layout.

URLs and views – creating the main
page

A view in Django terminology is a regular Python function that responds to a page
request by generating the corresponding page. To write our first Django view for
the main page, we first need to create a Django application inside our project. You
can think of an application as a container for views and data models. To create it,
issue the following command within our django_mytweets folder:

 $ python manage.py startapp tweets

The syntax of application creation is very similar to that of project creation. We used
the startapp command as the first parameter of the python manage.py
command, and provided tweets as the name of our application.

After running this command, Django will create a folder named tweets inside the
project folder with these three files:

__init__.py: This file tells Python that tweets is a Python package
views.py: This file will contain our views
models.py: This file will contain our data models

Now let's create the main page view. We will first create a template folder inside
the project to keep all the HTML files:

 $mkdir templates

Now create a base HTML file inside it named base.html with the following
content:

{% load staticfiles %}
<html>
<head>
<link href="{% static 'bootstrap/css/bootstrap.min.css' %}"
rel="stylesheet" media="screen" />">
</head>

<body>
{% block content %}
<h1 class="text-info">">HELLO DJANGO!</h1>
{% endblock %}

<script src="{% static 'bootstrap/js/bootstrap.min.js'
%}"></script>
</body>
</html>

Our directory structure will look something like this now (use the tree command if
you are on Linux OS):

mytweets/
|-- manage.py
|-- mytweets
| |-- __init__.py
| |-- __init__.pyc
| |-- settings.py
| |-- settings.pyc
| |-- urls.py
| |-- urls.pyc
| |-- wsgi.py
| `-- wsgi.pyc
|-- static
| |-- css
| | |-- bootstrap.css
| | |-- bootstrap.css.map
| | |-- bootstrap.min.css
| | |-- bootstrap-theme.css
| | |-- bootstrap-theme.css.map
| | `-- bootstrap-theme.min.css
| |-- fonts
| | |-- glyphicons-halflings-regular.eot
| | |-- glyphicons-halflings-regular.svg
| | |-- glyphicons-halflings-regular.ttf
| | `-- glyphicons-halflings-regular.woff
| `-- js
| |-- bootstrap.js
| `-- bootstrap.min.js
|-- templates
| `-- base.html

`-- tweets
|-- admin.py
|-- __init__.py
|-- models.py
|-- tests.py
`-- views.py

Introduction to class-based views

Class-based views are the new way of defining views in Django. They do not replace
function-based views. They are just an alternative way to implement views as
Python objects instead of functions. There are two advantages they have over
function-based views. With a class-based view, different HTTP requests can be
mapped to a different function, as opposed to a function-based view where the
branching takes place based on the request.method parameter. Object-oriented
techniques can be used to reuse the code component, such as mixins (multiple
inheritance).

Although we will be using class-based views for our project, to understand the exact
difference between the two, here we will present the code for both.

We will have to update the url.py file of our project so that the base.html file
will be served if the user requests the website.

Function-based view :

Update the view.py file as follows:

from django.http import HttpResponse

def index(request):
if request.method == 'GET':
return HttpResponse('I am called from a get Request')
elif request.method == 'POST':
return HttpResponse('I am called from a post Request')

Update the urls.py file as follows:

from django.conf.urls import patterns, include, url
from django.contrib import admin
from tweets import views
admin.autodiscover()

urlpatterns = patterns('',
url(r'^$', views.index, name='index'),
url(r'^admin/', include(admin.site.urls)),
)

Run the development server by using the following command:

 $python manage.py runserver

We will see a response saying I am called from a get Request .

Class-based view :

Update the views.py file as follows:

from django.http import HttpResponse
from django.views.generic import View

class Index(ViewV iew):
def get(self, request):
return HttpResponse('I am called from a get Request')
def post(self, request):
return HttpResponse('I am called from a post Request')

urls.py
from django.conf.urls import patterns, include, url
from django.contrib import admin
from tweets.views import Index
admin.autodiscover()

urlpatterns = patterns('',
url(r'^$', Index.as_view()),
url(r'^admin/', include(admin.site.urls)),
)

This will also generate the same result on the browser after the development server
is hit. We will be using class-based views throughout the project.

What we have rendered is just a string, which was kind of simple. We have created a
base.html file in our template folder and will now move ahead with our class-
based view and render our base.html file.

In Django, there is more than one way to render our page. We can render our page
using any of these three functions: render(), render_to_response(), or
direct_to_template(). However, let us first see what the difference between
them is and which one we should be using:

render_to_response(template[, dictionary][,
context_instance][, mimetype]): The render_to_response
command is the standard render function, and to use RequestContext, we

command is the standard render function, and to use RequestContext, we

will have to specify context_instance=RequestContext(request).
render(request, template[, dictionary][, context_instance]
[, content_type][, status][, current_app]). This is the new
shortcut for the render_to_response command and is available from
version 1.3 of Django. This will automatically use RequestContext.
direct_to_template(): This is a generic view. It automatically uses
RequestContext and all its context_processor parameters.

However, the direct_to_template command should be avoided as function-
based generic views are deprecated.

We will choose the second one, the render() function, for rendering our
base.html template.

The next step is the inclusion of the template folder in our Django application (the
template folder we have created with the base file named base.html). To include
the template, we will update the settings.py file in the following manner:

TEMPLATE_DIRS = (
BASE_DIR + '/templates/'
)
TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.Loader',
'django.template.loaders.app_directories.Loader',
)

This defines the template directory and initializes the basic TEMPLATE_LOADER
parameters.

Django settings for the mytweets
project

Let's update the settings.py file with the minimal settings that we need for our
mytweets project. Before starting our mytweets application we will add many
settings which we will see with the following changes. For more information on this
file, visit https://docs.djangoproject.com/en/1.6/topics/settings/.

For the full list of settings and their values, visit
https://docs.djangoproject.com/en/1.6/ref/settings/.

Update the settings.py file of our project with the following content:

Build paths inside the project like this:
os.path.join(BASE_DIR, ...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(__file__))

Quick-start development settings - unsuitable for production
See
https://docs.djangoproject.com/en/1.6/howto/deployment/checklis
t/

SECURITY WARNING: keep the secret key used in production
secret!
SECRET_KEY = 'XXXXXXXXXXXXXXXXXXXXXXXXXX'

SECURITY WARNING: don't run with debug turned on in
production!
DEBUG = True
TEMPLATE_DEBUG = True
ALLOWED_HOSTS = []

Application definition
INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

https://docs.djangoproject.com/en/1.6/topics/settings/
https://docs.djangoproject.com/en/1.6/ref/settings/

)

MIDDLEWARE_CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
)

ROOT_URLCONF = 'mytweets.urls'
WSGI_APPLICATION = 'mytweets.wsgi.application'

Database
https://docs.djangoproject.com/en/1.6/ref/settings/#databases

DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}

#static file directory inclusion
STATICFILES_DIRS = (
os.path.join(
os.path.dirname(__file__),
'static',
),
)

TEMPLATE_DIRS = (
BASE_DIR + '/templates/'
)

List of callables that know how to import templates from
various sources.
TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.Loader',
'django.template.loaders.app_directories.Loader',
'django.template.loaders.eggs.Loader',

)

Internationalization
https://docs.djangoproject.com/en/1.6/topics/i18n/

LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/1.6/howto/static-files/

STATIC_URL = '/static/'

Now if we start our development server, our screen will look like the following
screenshot:

Note

In our base.html file, we have written class="h1" instead of <h1></h1>. This
was knowingly done to check at runtime whether the bootstrap files are being
loaded, that is, with the Header 1 properties.

As you may have noticed, we haven't passed any variables to the template, which is
what roughly differentiates static pages and dynamic pages. Let's get ahead and do
that too. All we need is some changes in the views.py and base.html files, as
follows:

Changes in the views.py file:

from django.views.generic import View
from django.shortcuts import render
class Index(View):
def get(self, request):
params = {}
params["name"] = "Django"
return render(request, 'base.html', params)

Changes in the base.html file

{% load staticfiles %}
<html>
<head>
<link href="{% static 'bootstrap/css/bootstrap.min.css' %}"
rel="stylesheet" media="screen">
</head>

<body>
{% block content %}
<h1>Hello {{name}}!</h1>
{% endblock %}

<script src="{% static 'bootstrap/js/bootstrap.min.js'
%}"></script>
</body>
</html>

We can see how simple it is. All we did is just create a map (called dictionary in
Python) and assigned the name property to it as Django and added it in the
render() function as a new parameter. It gets rendered to the base of the HTML
and is easily called {{name}}. When it is rendered, it replaces itself with Django.

We will be committing all the changes we have made until now. Before we do that,
let's create a .gitignore file. What this does is, whatever content there is in this
file (or wildcard for the files that we have written inside the .gitignore file), it will
prevent all of them from committing and will send them to the repository server.

How does it help? It helps in many important use cases. Suppose we don't want to
put any local configuration files onto the production server. The .gitignore file
can be a savior in such situations, as also in a case when .py files generate their
.pyc files, which are compiled at runtime. We don't need those binary files on the

.pyc files, which are compiled at runtime. We don't need those binary files on the

server, as they will be separately generated each time the code changes.

On the Linux command line, just type the $vim .gitignore command in the root
folder of the project directory and write *.pyc. Then, save and exit in the usual way.

Now, if we execute the $git status command, we will not see any file with the
.pyc extension, which means that Git has ignored tracking files that end with the
.pyc extension.

The result of the $git status command is as follows:

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working
directory)

modified: mytweets/settings.py
modified: mytweets/urls.py

Untracked files:
(use "git add <file>..." to include in what will be committed)

.gitignore
static/
templates/
tweets/

This is quite clear, as it should be. We have previously committed the settings.py
and urls.py files, and now we've made some changes in them and the mentioned
untracked files are not even added to Git for tracking.

We can use the git add . command to add all the changes to the directory.
However, to avoid any unwanted files being pushed to Git tracking, it is
recommended that files be added one by one when we are in an advanced phase of
development. For the current situation, adding files all in one go is fine. To add the
required file to our project, use the following command:

 $git add .

The output will be as follows:

 On branch master

 Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitignore

 modified: mytweets/settings.py

 modified: mytweets/urls.py

 new file: static/css/bootstrap-theme.css

 new file: static/css/bootstrap-theme.css.map

 new file: static/css/bootstrap-theme.min.css

 new file: static/css/bootstrap.css

 new file: static/css/bootstrap.css.map

 new file: static/css/bootstrap.min.css

 new file: static/fonts/glyphicons-halflings-regular.eot

 new file: static/fonts/glyphicons-halflings-regular.svg

 new file: static/fonts/glyphicons-halflings-regular.ttf

 new file: static/fonts/glyphicons-halflings-regular.woff

 new file: static/js/bootstrap.js

 new file: static/js/bootstrap.min.js

 new file: templates/base.html

 new file: tweets/__init__.py

 new file: tweets/admin.py

 new file: tweets/models.py

 new file: tweets/tests.py

 new file: tweets/views.py

Commit the changes with proper messages, such as " basic bootstrap template
added ":

 $git commit -m "basic bootstap template added"

The output will be as follows:

 [master 195230b] basic bootstap template added

 21 files changed, 9062 insertions(+), 1 deletion(-)

 create mode 100644 .gitignore

 create mode 100644 static/css/bootstrap-theme.css

 create mode 100644 static/css/bootstrap-theme.css.map

 create mode 100644 static/css/bootstrap-theme.min.css

 create mode 100644 static/css/bootstrap.css

 create mode 100644 static/css/bootstrap.css.map

 create mode 100644 static/css/bootstrap.min.css

 create mode 100644 static/fonts/glyphicons-halflings-
regular.eot

 create mode 100644 static/fonts/glyphicons-halflings-
regular.svg

 create mode 100644 static/fonts/glyphicons-halflings-
regular.ttf

 create mode 100644 static/fonts/glyphicons-halflings-
regular.woff

 create mode 100644 static/js/bootstrap.js

 create mode 100644 static/js/bootstrap.min.js

 create mode 100644 templates/base.html

 create mode 100644 tweets/__init__.py

 create mode 100644 tweets/admin.py

 create mode 100644 tweets/models.py

 create mode 100644 tweets/tests.py

 create mode 100644 tweets/views.py

Putting it all together – generating user
pages

So far, we have covered a lot of material, such as introduction to the concepts of
views and templates. In the final section, we will write another view and make use of
all the information that we have learned so far. This view will display a list of all the
tweets that belong to a certain user.

Familiarization with the Django models

Models are the standard Python classes with some added features. They are
subclasses of django.db.models.Model. In the background, an Object-
Relational Mapper (ORM) gets bound with these classes and their objects. This
makes them communicate with the underlying database. ORM is one of the
important features of Django, without which we will end up writing our own queries
(SQL, if its MySQL) to access the database content. Each attribute of a model is
represented by a database field. Without its fields, a model will be just like an
empty container, with no meaning whatsoever.

The following are Django's model attributes explained with their intended use. A
complete list of fields can be found on the stranded documentation at
https://docs.djangoproject.com/en/dev/ref/models/fields/.

Following is a partial table of these types:

Field type Description
IntegerField An integer

TextField A large text field

DateTimeField A date-and-time field

EmailField An e-mail field with 75 characters maximum

URLField A URL field with 200 characters maximum

FileField A file-upload field

Each model field takes a set of field-specific arguments. For example, if we want a
field to be a CharField field, we must pass its max_length parameter as its
argument, which is mapped to the field size in varchar to the database.

The following are the arguments that can be applied to all the field types (they are
optional):

null: By default, it is set to false. When set to true, the associated field is

https://docs.djangoproject.com/en/dev/ref/models/fields/

null: By default, it is set to false. When set to true, the associated field is

allowed to have a value of null stored in the database.
blank: By default, it is set to false. When set to true, the associated field is
allowed to have a value of blank stored in the database.

Note

The difference between the null and blank parameters is that the null
parameter is mainly database-related, whereas the blank parameter is used
for validating the field. In other words, if the attribute is set to false, the
empty value (blank) for the attribute will not get saved.

choices: This can be a list or a tuple and must be iterable. If this is in the form
of a tuple, the first element is the value that will get stored to the database
and the second value is used for display in widget-like forms or
ModelChoiceField.

For example:

USER_ROLE = (
('U', 'USER'),
('S', 'STAFF'),
('A', 'ADMIN')
)
user_role = models.CharField(max_length=1,
choices=USER_ROLE)

default: Values that are assigned to the attribute every time an object of
the class is instantiated.
help_text: Help text displayed in the form of a widget.
primary_key: If set to True, this field is made primary key for the model. If
there is no primary key in the model, Django will create an integer field and
mark that as the primary key.

Relationships in models

There are three major types of relationships: many-to-one, many-to-many, and one-
to-one.

Many-to-one relationships

In Django, the django.db.models.ForeignKey parameter is used to define a
model as a foreign key to another model's attribute, which results in a many-to-
many relationship.

It is used as any other attribute of a model class, after including the class in which it
is present. For example, if students study in a particular school, the relationship is

is present. For example, if students study in a particular school, the relationship is

that the school has many students but a student goes to only one school, making
this a many-to-one relationship. Let's take a look at the following code snippet:

from django.db import models
class School(models.Model):
...
ass
class Student(models.Model):
school = models.ForeignKey(School)
…

One-to-one relationships

One-to-one relationships are very similar to many-to-one relationships. The only
difference is that reverse mapping results in a single object in the case of one-to-
one as opposed to many-to-one relationships.

For example:

class EntryDetail(models.Model):
entry = models.OneToOneField(Entry)
details = models.TextField()

In the preceding example, the EntryDetail() class has an attribute called entry,
which is mapped one-to-one with the Entry model. This means that every Entry
object has been mapped to the EntryDetail model.

Many-to-many relationships

As the name itself suggests, model attributes with many-to-many relationships
provide access to both the models it's been pointed to (like backward one-to-many
relationships). Attribute naming is the only significant difference between the two
relationships.

This will be clearer if we go through the following example:

class Product(models.Model):
name = models.CharField(_(u"Name"), max_length=50)
class Category(models.Model):
name = models.CharField(_(u"Name"), max_length=50)
products = models.ManyToManyField("Product", blank=True,
null=True)

With the idea of attribute and primary relationships, we can now straightaway
create our projects model, which we will soon be doing in the coming sections.

If we are going to design the model for an application, we should break up the
applications if it has too many models. If we have more than roughly 15 models in
our application, we should think about the ways in which to break our application
into smaller applications. This is because, with the existing 15-model application, we
are probably doing way too many things. This doesn't go with the Django
philosophy of an app should do one thing and do it right .

Models – designing an initial database
schema

Coming back to our project, we will need two models in the initial phase: the user
model and the tweet model. The user model will be used for storing the basic user
details of the users that have accounts in our project.

Then comes the tweet model, which will store data related to the tweet, such as
the tweet text, the user who has created that tweet, and other important details
such as the timestamps of the tweet posted, and so on.

To list the tweets of a user, it will be better if we create a separate user application
specific to all the users of our project. Our user models will be created by extending
Django's AbstractBaseUser user model class.

Note

Changing the actual user class in your Django source tree and/or copying and
altering the auth module is never recommended.

This will be the first application of using a framework for web development instead
of writing the whole authentication by ourselves, which is pretty common to all web
development scenarios. Django comes with predefined libraries so that we don't
have to reinvent the wheel. It comes with both authentication and authorization
together and is called the authentication system.

Django's user objects

An additional configurable user model is shipped with Django 1.5, which is the easier
method for storing user-specific data in the application.

We will create a user application and then import the Django's default user model
into it:

 $python manage.py startapp user_profile

We will extend the Django user model according to our need in the current project
by creating a custom User() class that inherits from the AbstractBaseUser class.
Therefore, our models.py file will look like this:

from django.db import models

from django.contrib.auth.models import AbstractBaseUser

class User(AbstractBaseUser):

Custom user class.

Now that we have created our custom user class for the project, we can add all the
basic attributes to this user class that we would like to be in the user model.

Now models.py looks like this:

from django.db import models
from django.contrib.auth.models import AbstractBaseUser

class User(AbstractBaseUser):

Custom user class.

username = models.CharField('username', max_length=10,
unique=True, db_index=True)
email = models.EmailField('email address', unique=True)
joined = models.DateTimeField(auto_now_add=True)
is_active = models.BooleanField(default=True)
is_admin = models.BooleanField(default=False)

In the preceding code snippet, the custom user model email field has a property
unique that is set to True. This means that a user can only register once with the
given e-mail address, the verification can be done on the registration page. You will
see a db_index option also in the username attribute with value True, which will
index the user table on the username attribute.

joined is the dateTimeField parameter populated automatically when a new
user profile is created; the is_active field is set to True by default when a new
user account is created, and the is_admin field is initialized to False at the same
time.

One more field is needed to make this almost the same as the default Django user
model, which is the username field.

Add the USERNAME_FIELD field in the models.py file as follows:

USERNAME_FIELD = 'username'
def __unicode__(self):
return self.username

USERNAME_FIELD also works as the unique identifier for a user model in Django.
We have mapped our username parameter with Django's username field. This field
must be unique (unique=True) in its definition, which our username field already
is.

The __unicode__() method is also added as the definition that displays a human-
readable representation of our user model object.

Thus, the final models.py file will look like this:

from django.db import models
from django.contrib.auth.models import AbstractBaseUser

class User(AbstractBaseUser):
"""
Custom user class.
"""
username = models.CharField('username', max_length=10,
unique=True, db_index=True)
email = models.EmailField('email address', unique=True)
joined = models.DateTimeField(auto_now_add=True)
is_active = models.BooleanField(default=True)
is_admin = models.BooleanField(default=False)

USERNAME_FIELD = 'username'
def __unicode__(self):
return self.username

Now, after defining our user model, we can move ahead to design the tweet model.
This is the same application that we created to check out the basic class-based view.
We will add content to its models.py file, as follows:

from django.db import models
from user_profile import User
class Tweet(models.Model):
"""
Tweet model
"""
user = models.ForeignKey(User)
text = models.CharField(max_length=160)
created_date = models.DateTimeField(auto_now_add=True)
country = models.CharField(max_length=30)
is_active = models.BooleanField(default=True)

The tweet model is designed as to be as simplistic as possible for the user. The
attribute parameter is a foreign key to the User object we have already created.
The text attribute is the tweet content and it will mostly consist of plain text. The
created_Date attribute, which is automatically added to the database when the
tweet object is uninitialized, stores the name of the country from where the tweet
has actually been posted. In most cases, it will be the same as the user's country.
The is_active flag is used to represent the tweet's current status, whether it's
active and can be displayed or has been deleted by the user.

We need to create the tables in the database for both the models we just created,
user_profile and tweet. We will have to update the INSTALLED_APPS variable
of your project's settings.py file to tell Django to include these two applications
in the Django project.

Our updated INSTALLED_APPS variable will be as follows:

INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'user_profile',
'tweet'
)

You can see the last two entries we made to add our models.

Now to create the database table for our project, we will run the command from our
root project folder in the terminal:

 $python manage.py syncdb

The output will be as follows:

Creating tables ...
Creating table django_admin_log
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group

Creating table auth_user_groups
Creating table auth_user_user_permissions
Creating table auth_user
Creating table django_content_type
Creating table django_session
Creating table user_profile_user
Creating table tweet_tweet

You just installed Django's auth system, which means you don't have any superusers
defined. You can see the following on the terminal:

Would you like to create one now? (yes/no): yes
Username (leave blank to use 'ratan'):
Email address: mail@ratankumar.org
Password: XXXX
Password (again): XXXX
Superuser created successfully.
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

As a result, our database has been populated with a table. There will appear a
database file for our project called db.sqlite3.

As with Django 1.6, the administrator panel comes by default. All we need for our
models to be available in Django's admin panel is to add the
admin.site.register parameter with the model name as argument for both the
applications.

Thus, after addition of admin.site.register(parameter) to both the
admin.py, that is, under mytweets and user_profile files will look as the
following:

The admin.py file of the tweet application would look as follows:

from django.contrib import admin
from models import Tweet

admin.site.register(Tweet)

The admin.py file of the user_profile application would look as follows:

from django.contrib import admin
from models import User
admin.site.register(User)

Start the server using the following command:

 $python manage.py runserver

Then visit the URL http://127.0.0.1:8000/admin; it will ask for login
information. As you may remember, we have created the default user at the time of
running the $python manage.py syncdb command; use the same username and
password.

After successful login, the admin dashboard looks like the following screenshot:

Let's play with the admin dashboard and create a user and a tweet object that we
will be using next for home page views. To add a new user to the project just click on
the Add button in front of the user model box as shown in the following screenshot:

Then fill up the details and save it. You will see a "user successfully created"
message as shown in the following screenshot:

We will follow a similar process for creating a tweet. First go back to
http://127.0.0.1:8000/admin/. Then, click on the Add button in front of the
tweet box.

Compose a new tweet by filling out the boxes and selecting the user from the
dropdown. This user list is already populated as we have mapped the user to the
user object. As we keep on adding users, the dropdown will get populated with all
the user objects.

Finally, after composing the tweet, click on the Save button. You will see the same

Finally, after composing the tweet, click on the Save button. You will see the same

screen shown in the following screenshot:

If you look closely, the administrator listing page says every tweet is a tweet object,
which is not very human-friendly. It can easily be customized for this case. In fact,
the same rule is applicable for all the model base representations in the Django
admin view or wherever they are displayed.

Add the following code snippet in the admin.py file of our project:

def __unicode__(self):
return self.text

Our admin view will now show the exact text instead of writing tweet object.

Creating a URL

Every user in our project will have a profile with a unique URL in the following
format: http://127.0.0.1:8000/user/<username>. Here, the username
variable is the owner of the tweets that we want to see. This URL is different from
the first URL we added earlier because this contains a dynamic portion, so we will
have to employ the power of regular expressions in order to express this URL. Open
the urls.py file and edit it so that the URL table looks like this:

url(r'^user/(\w+)/$', Profile.as_view()), urls.py
from django.conf.urls import patterns, include, url
from django.contrib import admin
from tweet.views import Index,Profile
admin.autodiscover()

urlpatterns = patterns('',
url(r'^$', Index.as_view()),
url(r'^user/(\w+)/$', Profile.as_view()),
url(r'^admin/', include(admin.site.urls)),
)

The pattern here looks more complicated than the first one. The annotation \w
means an alphanumeric character or the underscore. The + sign after it causes the
regular expression to match one or more repetitions of what precedes the sign. So,
in effect,\w+ means any string that consists of alphanumeric characters and
possibly the underscore. We have surrounded this portion of the regular expression
with parentheses. This will cause Django to capture the string that matches this
portion and pass it to the view.

One last thing needs explaining before we see the view in action. The regular
expression that we used will look a bit strange if you haven't used regular
expressions before. It is a raw string that contains two characters, ^ and $. The
annotation r'' is the Python syntax for defining raw strings. If Python encounters
such a raw string, backslashes and other escape sequences are retained in the string,
rather than being interpreted in any way. In this syntax, backslashes are left in the
string without change and escape sequences are not interpreted. This is useful
while working with regular expressions because they often contain backslashes.

In regular expressions, ^ means the beginning of the string and $ means the end of
the string. So ^$ basically means a string that doesn't contain anything, that is, an
empty string. Given that we are writing the view of the main page, the URL of the
page is the root URL and it should indeed be empty.

Python documentation of the re module covers regular expressions in detail. I

Python documentation of the re module covers regular expressions in detail. I

recommend reading it if you want a thorough treatment of regular expressions. You
can find the documentation online at http://docs.python.org/lib/module-re.html.
Here is a table that summarizes regular expression syntax for those who want a
quick refresher:

Symbol /expression Matched string
. (Dot) Any character

^ (Caret) Start of string

$ End of string

* 0 or more repetitions

+ 1 or more repetitions

? 0 or 1 repetitions

| A | B means A or B

[a-z] Any lowercase character

\w Any alphanumeric character or _

\d Any digit

We will now be creating a Profile() class with GET functions in the view.py file
of our tweet application. The important thing to learn here is how the get()
function handles the dynamic parameter passed through the URL, which is the
username variable.

The view.py of our tweet application would look as follows:

class Profile(View):
"""User Profile page reachable from /user/<username> URL"""
def get(self, request, username):
params = dict()()()
user = User.objects.get(username=username)
tweets = Tweet.objects.filter(user=user)
params["tweets"] = tweets
params["user"] = user
return render(request, 'profile.html', params)

Templates – creating a template for the Main Page

We are almost done with the model creation for our project. We will now move
ahead and create the view page.

The first page we are going to create is the basic page which will list out all the

http://docs.python.org/lib/module-re.html

The first page we are going to create is the basic page which will list out all the

tweets posted by a user. This can be a so-called public profile page that can be
accessed without any authentication.

As you might have noticed, we have used a profile.html file in the Profile class
of the views.py file, which belongs to our tweet application.

The views.py file of our project will look as follows:

class Profile(View):
"""User Profile page reachable from /user/<username> URL"""
def get(self, request, username):
params = dict()
user = User.objects.get(username=username)
tweets = Tweet.objects.filter(user=user)
params["tweets"] = tweets
params["user"] = user
return render(request, 'profile.html', params)

We will use the Bootstrap framework, which we have already imported in our
base.html file, to design the Profile.html file.

We will first restructure the base.html file which we created for our application.
Now this base.html file will be used as a template or theme of our project. We will
import this file across the project, which results in constant user interface across the
project.

We will just remove the div tag we placed inside the block content from our
base.html file.

We also need jQuery, which is a JavaScript library for complete functioning of
bootstrap. It can be downloaded from http://jquery.com/download/. For our current
project, we will download the latest version of jQuery in production-ready phase.
We will be adding it before bootstrap's JavaScript import.

The base.html file should look like this now:

{% load staticfiles %}
<html>
<head>
<link href="{% static 'bootstrap/css/bootstrap.min.css' %}"
rel="stylesheet" media="screen">
</head>

<body>
{% block content %}

http://jquery.com/download/

{% endblock %}

<script src="{% static 'js/jquery-2.1.1.min.js' %}"></script>
<script src="{% static 'bootstrap/js/bootstrap.min.js'
%}"></script>
</body>
</html>

In this case the block is as follows:

{% block content %}
{% endblock %}

This means that, whichever template we are going to extend the base.html file,
currently in the profile.html file, the content of the profile.html file will be
rendered between these block quotes. To understand this better, consider this: you
have a header (in some cases, navigation bar) and footer on every page and the
page content changes depending upon the view. With the preceding template, we
generally need to place the header code before the block content and footer
content below the block content.

Using a header is much easier now as we have the advantage of frontend
framework. We will first choose the layout of our project. For simplicity, we will
divide the whole page into three sections. The first will be the header, which will be
constant as we navigate throughout the project. The same will apply to the bottom
of the page, which is our footer.

To achieve the preceding layout, our bootstrap code will be built in this way: we will
use bootstrap's navbar for our header section as well as for the footer section.
Then we will place the container div tag. Our updated code for the base.html file
will be changed to the following:

{% load staticfiles %}
<html>
<head>
<link href="{% static 'css/bootstrap.min.css' %}"
rel="stylesheet" media="screen">
</head>
<body>
<nav class="navbar navbar-default navbar-fixed-top"
role="navigation">
MyTweets
<p class="navbar-text navbar-right">User Profile Page</p>
</nav>
<div class="container">
{% block content %}

{% endblock %}
</div>
<nav class="navbar navbar-default navbar-fixed-bottom"
role="navigation">
<p class="navbar-text navbar-right">Footer </p>

</nav>
<script src="{% static 'js/bootstrap.min.js' %}"></script>
</body>
</html>

The navbar parameter will start in the body, but before the container, so that it can
wrap the whole container. We use Django block content to render the rows which
we will define in the extended templates, in this case, the profile.html file. The
footer section comes in last, which is after the endblock statement.

This will render the following page:

Tip

Note that if you do not get the static file included, replace the STATICFILES_DIRS
variable with the following in your settings.p y file:

STATICFILES_DIRS = (
BASE_DIR + '/static/',
)

The design for the profile page is as follows:

This can easily be designed again with the help of a bootstrap component called
well. The well or wellbox components are used with an element to give it an
inset effect. The profile.html file will just extend the base.html file and only
contain rows and further elements.

The profile.html file of our project would look as follows:

{% extends "base.html" %}
{% block content %}
<div class="row clearfix">
<div class="col-md-12 column">
{% for tweet in tweets %}
<div class="well">
{{ tweet.text }}
</div>
{% endfor %}
</div>
</div>
{% endblock %}

This will show the tweets of a user we pass via a parameter in the URL. The example
we have taken is the user ratancs, who we created during the initial setup. You can
see their tweets in the following screenshot:

Summary

We learned the basic terminology related to our Django project, what we need to
set up the basic template structure of our project, and how to set up the bootstrap
for our tweet-like application. We also saw how MVC works here and the role of URL
and views while creating the main page.

Then, we introduced class-based views to generate user pages. We saw how models
work in Django and how to design the database schema for the project. We also
learned to build a user registration page, an account management page, and a
template for the main page.

We will learn to design the algorithm for building a hashtag model and the
mechanism to use hashtags in your post in the following chapters.

Chapter 5. Introducing Hashtags

Tags are one of the most prominent features in Web 2.0 applications. A tag is a
keyword associated with a piece of information, such as an article, image, or link.
Tagging is the process of assigning tags to content. It is usually done by the author
or users and allows for user-defined categorization of content.

We will also be using tags in our project, and we will be calling it hashtags . Tags
have become very popular in web applications because they enable users to classify,
view, and share content easily. If you are not familiar with tags, you can see
examples by visiting social sites such as Twitter, Facebook, or Google Plus, where
tags are pinned to each status or conversation to help us find trending topics. Since
we are going to build a micro blogging site, tags will help us to categorize the
conversations between users.

To introduce tags into our system, we need a mechanism that enables users to
submit tweets to the database along with hashtags. Later, we will also need a
method for browsing tweets classified under a certain tag.

In this chapter, you will learn about the following:

Designing a hashtag data model
Building an algorithm that separates hashtags from a tweet form
Creating pages for listing tweets under a certain hashtag
Building a tag cloud

The hashtag data model

Hashtags need to be stored in the database and associated with tweets. So, the first
step to introducing tags into our project is to create a data model for hashtags. A
hashtag object will only hold one piece of data, a string that represents the hashtag.
In addition, we need to maintain the list of hashtags associated with a particular
tweet.

You may recall from Chapter 4, Building an Application Like Twitter , that we used
foreign keys to associate tweets with users, and we called this a one-to-many
relationship. However, the relationship between hashtags and tweets is not one-to-
many, because one hashtag can be associated with many tweets, and one tweet can
also have many hashtags associated with it. This is called a many-to-many
relationship, and it is represented in Django models using the
models.ManyToManyField parameter.

You should be well aware by now that data models go into the mytweet |
models.py file. So, open the file and add the following HashTag class to it:

part0034.xhtml#aid-10DJ41

class HashTag(models.Model):
 """
 HashTag model
 """
 name = models.CharField(max_length=64, unique=True)
 tweet = models.ManyToManyField(Tweet)
 def __unicode__(self):
 return self.name

Pretty straightforward, isn't it? We simply defined a data model for hashtags. This
model holds the tag name and its tweet in its ManyToManyField parameter. When
you have finished entering the code, don't forget to run the following command in
order to create a table for the model in the database:

 $ python manage.py syncdb

output:

 Creating tables ...

 Creating table tweet_hashtag_tweet

 Creating table tweet_hashtag

 Installing custom SQL ...

 Installing indexes ...

 Installed 0 object(s) from 0 fixture(s)

Now, to see the detailed SQL query of how Django creates and implements all the
relationships, and also how it creates the table for them, we can just issue the

relationships, and also how it creates the table for them, we can just issue the

command sql with the model name to manage.py. It will show the SQL queries it
will run to create the instance of the object. Those who are already familiar with
SQL know that many-to-many relationships are usually implemented in SQL by
creating a third table that connects the two related tables. Now, let's see how
Django implements this type of relationship. In the terminal, issue the following
command:

 $ python manage.py sql tweet

output:

 BEGIN;

 CREATE TABLE "tweet_tweet" (

 "id" integer NOT NULL PRIMARY KEY,

 "user_id" integer NOT NULL REFERENCES
"user_profile_user" ("id"),

 "text" varchar(160) NOT NULL,

 "created_date" datetime NOT NULL,

 "country" varchar(30) NOT NULL,

 "is_active" bool NOT NULL

)

 ;

 CREATE TABLE "tweet_hashtag_tweet" (

 "id" integer NOT NULL PRIMARY KEY,

 "hashtag_id" integer NOT NULL,

 "tweet_id" integer NOT NULL REFERENCES "tweet_tweet"
("id"),

 UNIQUE ("hashtag_id", "tweet_id")

)

 ;

 CREATE TABLE "tweet_hashtag" (

 "id" integer NOT NULL PRIMARY KEY,

 "name" varchar(64) NOT NULL UNIQUE

)

 ;

 COMMIT;

The output may slightly differ depending on your database engine. Indeed, Django
automatically creates an extra table called tweet_hashtag_tweet to maintain the
many-to-many relationship.

It is worth noting that when we define a many-to-many relationship in Django's
model API, the models.ManyToMany field can be placed in either of the two
related models. We could have put this field in the tweet model instead of hashtag;
since we created the hashtag model later, we put the models.ManyToMany field in
it.

For testing purposes, we will move to the admin panel and create a tweet with
hashtags, as we did for both user and tweet creation. But, first, we will have to
register the hashtags for the administration panel in the admin.py file.

The modified admin.py file will look like this:

 from django.contrib import admin
 from models import Tweet,Hashtag
 # Register your models here.
 admin.site.register(Tweet)
 admin.site.register(HashTag)

Now we can move to the administration panel with /administration URL.

Before we create a hashtag for a tweet, we need to create a tweet with a hashtag.
Later, we will write a program that will parse the tweet and automatically create the
hashtag instance associated with it.

Refer to the demo diagram for creating the tweet that we have shown in Chapter 4,
Building an Application Like Twitter , and create a tweet with the following text:

Hello, #Django! you are awesome.

With the same user we used, ratancs, then move on to the hashtag model and
create the hashtag #Django and associate it with the tweet we created. This will
give you an idea of how we assign a hashtag to the tweet.

Let us create a proper tweet submission form, which will ask users to write the
tweet as input. It will create all the hashtags associated with the tweet and will save
the tweet.

Have a look at the user profile page we have created. At the top center of the page,
there will be an input box already associated with the user; thus, when he writes a
tweet and hits the button to submit, the tweet will be saved with his ID.

part0034.xhtml#aid-10DJ41

Now, visit this URL: http://localhost:8000/user/ratancs/. You will see both
the tweets we created earlier.

We will go back to the profile.html code and append a text area with a submit
button to post a tweet for the user. The design will be the same as we chose to
display the tweet–that is, we will be using the same well box of Twitter
bootstrap.

Our profile.html file template is as follows:

 {% extends "base.html" %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-12 column">
 {% for tweet in tweets %}
 <div class="well">
 {{ tweet.text }}
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

This {%for ...} block is used to represent multiple tweets, one below each other,
as they have the div tag.

Now we will create a div tag just above the {% for ...} block, and will add our
tweet submission form.

Before we write out the form, let us understand about Django forms and how they
can be used.

Django forms

Creating, validating and processing forms is an all-too-common task. Web
applications receive input and collect data from users by means of web forms. So,
naturally, Django comes with its own library to handle these tasks. All you have to
do is to import the library and start writing your forms:

from django import forms

The Django forms library handles three common tasks:

HTML form generation
Server-side validation of user input
HTML form redisplay in case of input errors

The way in which this library works is similar to the way in which Django's data
models work. You start by defining a class that represents your form. This class must
be derived from the forms.Form base class. Attributes in this class represent form
fields. The forms package provides many field types.

When you create an object from a class that is derived from the forms.Form base
class, you can interact with it using a variety of methods. There are methods for
HTML code generation, methods to access the input data, and methods to validate
the form.

We will learn about the forms library by creating a tweet post form in the next
section.

Designing the tweet post form

Let's start by creating our first Django form. Create a new file in the tweets
application folder and call it forms.py. Then, open the file in your code editor and
enter the following code:

 from django import forms
 class TweetForm(forms.Form):
 text = forms.CharField(widget=forms.Textarea(attrs={'rows':
1, 'cols': 85}), max_length=160)
 country = forms.CharField(widget=forms.HiddenInput())

After examining the code, you will notice that the way in which we defined this class
is similar to the way in which we defined the model classes. We derived the
TweetForm class from forms.Form. All form classes need to inherit from this class.
Next, we define the fields that this form contains:

 text = forms.CharField(widget=forms.Textarea(attrs={'rows':
1, 'cols': 85}), max_length=160)

The form contains a text field which will have an HTML tag for text area, an
additional attribute for rows and column, and a maximum size limit for input, which
is same as the maximum length of the tweet.

 country = forms.CharField(widget=forms.HiddenInput())

Please note that the form also contains a hidden field called country, which will be
a char field.

There are many field types in the forms package. There are several parameters,
listed as follows, which can be passed to the constructor of any field type. Some
specialized field types can take other parameters in addition to these ones.

label: The label of the field when HTML code is generated.
required: Whether the user must enter a value or not. It is set to True by
default. To change it, pass required=False to the constructor.
widget: This parameter lets you control how the field is rendered in HTML.
We used it just now to make the CharField parameter of the password
become a password input field.
help_text: A description of the field will be displayed when the form is
rendered.

The following is a table of commonly used field types:

Field type Description
CharField Returns a string.

IntegerField Returns an integer.

DateField Returns a Python datetime.date object.

DateTimeField Returns a Python datetime.datetime object.

EmailField Returns a valid e-mail address as a string.

URLField Returns a valid URL as a string.

Here is a partial list of available form widgets:

Widget type Description
PasswordInput A password text field.

HiddenInput A hidden input field.

Textarea A text area that enables text entry on multiple lines.

FileInput A file upload field.

Now, we need to modify the profile.html file as per the form.py file. Update
the profile.html file as follows:

 {% extends "base.html" %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-12 column">
 <form method="post" action="post/">{% csrf_token %}
 <div class="col-md-8 col-md-offset-2 fieldWrapper">
 {{ form.text.errors }}
 {{ form.text }}
 </div>
 {{ form.country.as_hidden }}
 <div>
 <input type="submit" value="post">
 </div>
 </form>
 </div>
 <h3> </h3>
 <div class="col-md-12 column">
 {% for tweet in tweets %}
 <div class="well">

 {{ tweet.text }}
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

Posting the tweet is achieved by a simple form, which is <form method="post"
action="post/">{% csrf_token %}. The method with which the form will be
posted is "post" and the relative URL to post a tweet form will be post/,

 {% csrf_token %}

This code generated the CSRF token, which actually addresses a security issue; it
protects this post URL from attacks from another server; details on this will be
explained in a later section in this chapter.

We have added a div tag just before the tweet <div>, and this div tag contains a
form that will save the tweets when the post button is clicked on.

<div class="col-md-8 col-md-offset-2 fieldWrapper">
 {{ form.text.errors }}
 {{ form.text }}
</div>

This fieldWrapper class in the div tag is used by Django's form library to render
the HTML tag that we have mentioned for text in form class (which is Text area),
followed by the cases of form renders for any error.

This will render the form as shown in the following screenshot:

Now, we need to do two things to make this form work:

1. We have to define a method in a controller that is going to take this form
submission request and save the tweet data to our tweet model class object.

2. We have to define a URL pattern to which this form will be submitted with the

2. We have to define a URL pattern to which this form will be submitted with the

tweet as content.

To handle the request, we will add a new class which will accept the tweet from the
form. We will name this class PostTweet. This class is added in tweet/view.py
with an import dependency from tweet.forms import TweetForm.

 class PostTweet(View):
 """Tweet Post form available on page /user/<username>
URL"""
 def post(self, request, username):
 form = TweetForm(self.request.POST)
 if form.is_valid():
 user = User.objects.get(username=username)
 tweet = Tweet(text=form.cleaned_data['text'],
 user=user,
 country=form.cleaned_data['country'])
 tweet.save()
 words = form.cleaned_data['text'].split(" ")
 for word in words:
 if word[0] == "#":
 hashtag, created =
HashTag.objects.get_or_create(name=word[1:])
 hashtag.tweet.add(tweet)
 return HttpResponseRedirect('/user/'+username)

We only need to define the post method as we only need this class to accept the
data. This logic is pretty clear here; if the form is valid, only then will the data be
persisted. Redirection always happens. The code also does one more special task;
that is, the separation of all the hashtags from a tweet. This is done in a similar way
to splitting all the words in a tweet, and if the word starts with # (hash), it will create
a hashtag of that word (think of a regular expression here). For the second part, we
are going to add an entry in our urls.py file, as follows:

from django.conf.urls import patterns, include, url
from django.contrib import admin
from tweet.views import Index, Profile, PostTweet

admin.autodiscover()

urlpatterns = patterns('',
 url(r'^$', Index.as_view()),
 url(r'^user/(\w+)/$', Profile.as_view()),
 url(r'^admin/', include(admin.site.urls)),

 url(r'^user/(\w+)/post/$', PostTweet.as_view())
)

If you look carefully at the last line, we have:

 url(r'^user/(\w+)/post/$', PostTweet.as_view())

This means that all the requests of the form /user/<username>/post will be
rendered by PostTweet.

With this, we have made a simple Django form that can make the user post the
tweet from his Twitter page, as shown in the following image:

Once the tweet is posted, the page will show all tweets, as shown in the following
image:

Creating a tag page

Next, we will create a page that is similar to the Twitter listing for hashtags. For this
task, we will almost follow the same architecture that we followed for the user
profile. Let's start by adding a URL entry for the hashtag page. Open the urls.py
file and insert the following entry (preferably below the user page entry so as to
keep the table organized):

 url(r'^hashTag/(\w+)/$', HashTagCloud.as_view()),

The captured part of this regular expression is the same as that of the user page. We
will only allow alphanumeric characters in a hashtag.

We will define the hashtag class in the controller as follows:

 class HashTagCloud(View):
 """Hash Tag page reachable from /hastag/<hashtag> URL"""
 def get(self, request, hashtag):
 params = dict()
 hashtag = HashTag.objects.get(name=hashtag)
 params["tweets"] = hashtag.tweet
 return render(request, 'hashtag.html', params)

The HTML template page we will use will be almost the same as that of the profile,
except for the form part that we used for posting the tweet.

We need to create the hashtag.html file with the following code:

 {% extends "base.html" %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-12 column">
 {% for tweet in tweets.all %}
 <div class="well">
 {{ tweet.text }}
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

This will list all the tweets with the hashtag passed from the URL.

Summary

We have learned how to design a hashtag data model and an algorithm required to
separate hashtags from a tweet form. Then, we created pages for listing tweets
under a certain hashtag. We saw a code snippet for how to build a tweet with
hashtag like a tag cloud seen in many blogging sites.

In the next chapter, we will see how to enhance the UI experience using AJAX with
Django.

Chapter 6. Enhancing the User Interface
with AJAX

The coming of AJAX was an important landmark in the history of Web 2.0. AJAX is a
group of technologies that enables developers to build interactive, feature-rich Web
applications. Most of these technologies were available many years before AJAX
itself. However, the advent of AJAX represents the transition of the Web from static
pages that needed to be refreshed whenever data was exchanged to dynamic,
responsive, and interactive user interfaces.

Since our project is a Web 2.0 application, it should be heavily focused on user
experience. The success of our application depends on getting users to post and
share content on it. Therefore, the user interface of our application is one of our
major concerns. This chapter will improve the interface of our application by
introducing AJAX features, making it more user-friendly and interactive.

In this chapter, you will learn about the following topics:

AJAX and its advantages
Using AJAX in Django
How to use the open source jQuery framework
Implementing the searching of tweets
Editing a tweet in place without loading a separate page
Auto completion of hashtags while submitting a tweet

AJAX and its advantages

AJAX, which stands for Asynchronous JavaScript and XML , consists of the
following technologies:

HTML and CSS to structure and style information
JavaScript to access and manipulate information dynamically
An XMLHttpRequest object, which is an object provided by modern browsers
to exchange data with the server without reloading the current web page
A format to transfer data between the client and server

XML is used sometimes, but it could be in the HTML, plain text, or JavaScript-based
format called JSON.

AJAX technologies let you code the client-side exchange data with the server behind
the scenes, without reloading the entire page each time the user makes a request.
By using AJAX, Web developers are able to increase the interactivity and usability of
Web pages.

AJAX offers the following advantages when implemented in the right places:

Better user experience : With AJAX, the user can do a lot without refreshing
the page, which brings Web applications closer to the regular desktop
applications
Better performance : By exchanging only the required data with the server,
AJAX saves the bandwidth and increases the application's speed

There are numerous examples of Web applications that use AJAX. Google Maps and
Gmail are perhaps two of the most prominent examples. In fact, these two
applications played an important role in spreading the use of AJAX because of the
success that they enjoyed. What sets Gmail apart from other webmail services is its
user interface, which enables users to manage their e-mails interactively without
waiting for a page to reload after every action. This creates a better user experience
and makes Gmail feel like a responsive and feature-rich application rather than a
simple website.

This chapter explains how to use AJAX with Django, so as to make our application
more responsive and user-friendly. We are going to implement three of the most
common AJAX features found in web applications today. However, before that, we
will learn about the benefits of using an AJAX framework, as opposed to working
with raw JavaScript functions.

Using an AJAX framework in Django

As we have already used Bootstrap in our project, we need not configure it
separately for AJAX and jQuery.

There are many advantages of using an AJAX framework:

JavaScript implementations vary from browser to browser. Some browsers
provide more complete and feature-rich implementations, whereas others
contain implementations that are incomplete or don't adhere to standards.

Without an AJAX framework, developers must keep track of browser support
for the JavaScript features that they are using and must work around the
limitations that are present in some browsers for the implementation of
JavaScript.

On the other hand, when using an AJAX framework, the framework takes care
of this for us; it abstracts access to the JavaScript implementation and deals
with the differences and quirks of JavaScript across browsers. This way, we
can concentrate on developing features instead of worrying about browser
differences and limitations.
The standard set of JavaScript functions and classes is a bit lacking for full-
fledged web application development. Various common tasks require many
lines of code even though they could be wrapped in simple functions.

Therefore, even if you decide not to use an AJAX framework, you will find
yourself writing a library of functions that encapsulates JavaScript facilities
and makes them more usable. However, why reinvent the wheel when there
are many excellent open source libraries already available?

AJAX frameworks available in the market today range from comprehensive
solutions that provide server-side and client-side components to light-weight client-
side libraries that simplify working with JavaScript. Given that we are already using
Django on the server side, we only want a client-side framework. In addition to this,
the framework should be easy to integrate with Django without requiring any
additional dependencies. Finally, it is preferable to pick a light and fast framework.
There are many excellent frameworks that fulfill our requirements, such as
Prototype , the Yahoo! UI Library , and jQuery .

However, for our application, I'm going to pick jQuery because it's the lightest of the
three. It also enjoys a very active development community and a wide range of
plugins. If you already have experience with another framework, you can continue
using it during this chapter. It is true that you will have to adapt the JavaScript code
in this chapter to your framework, but Django code on the server side will remain
the same no matter which framework you choose.

Note

You need to import Bootstrap and jQuery as well. Thus, no specific installation or
import is needed to use the AJAX feature in our Django project.

Using the open source jQuery
framework

Before we start implementing AJAX enhancements in our project, let's go through a
quick introduction to the jQuery framework.

The jQuery JavaScript framework

jQuery is a library of JavaScript functions that facilitates interaction with HTML
documents and manipulates them. The library is designed to reduce the time and
effort spent on writing code and achieving cross-browser compatibility, while at the
same time it takes full advantage of what JavaScript offers to build interactive and
responsive web applications.

The general workflow of using jQuery consists of the following two steps:

1. Selecting an HTML element or a group of elements to work on.
2. Applying a jQuery method to the selected group.

Element selectors

jQuery provides a simple approach to select elements: it works by passing a CSS
selector string to a function called $(). Here are some examples that illustrate the
usage of this function:

If you want to select all anchor (<a>) elements on a page, you can use the
$("a") function call
If you want to select anchor elements that have the .title CSS class, use

$("a.title")

To select an element whose ID is #nav, you can use $("#nav")
To select all the list item () elements inside #nav, use $("#nav li")

The $() function constructs and returns a jQuery object. After that, you can call
methods on this object to interact with the selected HTML elements.

jQuery methods

jQuery offers a variety of methods to manipulate HTML documents. You can hide or
show elements, attach event handlers to events, modify CSS properties, manipulate
the page structure, and, most importantly, perform AJAX requests.

To debug, we are choosing the Chrome browser as the browser of our choice.
Chrome is one of the most advanced JavaScript debugger in the form of its Chrome

Chrome is one of the most advanced JavaScript debugger in the form of its Chrome

developer's tools. To launch it, press Ctrl + Shift + J on the keyboard.

To experiment with the methods outlined in this section, launch the development
server and navigate to the user profile page
(http://127.0.0.1:8000/user/ratan/). Open the Chrome developer tool (by
pressing Ctrl + Shift + J on your keyboard) console by pressing F12 , and try selecting
the elements and manipulating them.

Hiding and showing elements

Let's start with something simple. To hide an element on the page, call the hide()
method on it. To show it again, call the show() method. For example, try this on the
navigation menu called navbar in Bootstrap of your application:

 >>> $(".navbar").hide()

 >>> $(".navbar").show()

You can also animate the element while hiding and showing it. Try the fadeOut(),
fadeIn(), slideUp(), or slideDown() methods to see two of these animated
effects.

Of course, these methods (like all other jQuery methods) also work if you select
more than one element at once. For example, if you open a user profile and enter
the following method call into the Chrome developers tools console, all of the
tweets will disappear:

 >>> $('.well').slideUp()

Accessing CSS properties and HTML attributes

Next, we will learn how to change the CSS properties of elements. jQuery offers a
method called css() to perform CSS operations. If you call this method with a CSS
property name passed as a string, it returns the value of this property:

 >>> $(".navbar").css("display")

The result of this is as follows:

 block

If you pass a second argument to this method, it sets the specified CSS property of
the selected element to the additional argument:

 >>> $(".navbar").css("font-size", "0.8em")

The result of this is as follows:

 <div id="nav" style="font-size: 0.8em;">

In fact, you can manipulate any HTML attribute and not just CSS properties. To do so,
use the attr() method, which works in a similar way as the css() method. Calling
it with an attribute name returns the attribute value, whereas calling it with an
attribute name or value pair sets the attribute to the passed value:

 >>> $("input").attr("size", "48")

This results in the following:

 <input type="hidden" name="csrfmiddlewaretoken"
value="xxx" size="48">

 <input id="id_country" name="country" type="hidden"
value="Global" size="48">

 <input type="submit" value="post" size="48">

This will change the size of all the input elements on the page at once to 48.

In addition to this, there are shortcut methods to get and set commonly used
attributes, such as val(), which returns the value of an input field when called
without arguments and sets this value to an argument if you pass one. There is also
the html() method that controls the HTML code inside an element.

Finally, there are two methods that can be used to attach or detach a CSS class to an
element: they are the addClass() and removeClass() methods. A third method
is provided to toggle a CSS class and it is called as the toggleClass() method. All
of these class methods take the name of the class to be changed as a parameter.

Manipulating HTML documents

Now that you are comfortable with manipulating HTML elements, let's see how to
add new elements or remove the existing elements. To insert HTML code before an
element, use the before() method, and to insert code after an element, use the
after() method. Note how jQuery methods are well named and very easy to
remember!

Let's test these methods by inserting parentheses around tag lists on the user page.

Open your user page and enter the following in the Chrome developer tools
console:

 >>> $(".well span").before("(")

 >>> $(".well span").after(")")

You can pass any string you want to, the before() or after() methods. The string
may contain plain text, one HTML element, or more. These methods offer a very
flexible way to dynamically add HTML elements to an HTML document.

If you want to remove an element, use the remove() method. For example:

 $("#navbar").remove()

Not only does this method hide the element, it also removes it completely from the
document tree. If you try to select the element again after using the remove()
method, you will get an empty set:

 >>> $("#nav")

The result of this is as follows:

 []

Of course, this only removes the elements from the current instance of the page. If
you reload the page, the elements will appear again.

Traversing the document tree

Although CSS selectors offer a very powerful way to select elements, there are
times when you want to traverse the document tree starting from a particular
element.

For this, jQuery provides several methods. The parent() method returns the
parent of the currently selected element. The children() method returns all the
immediate children of the selected element. Finally, the find() method returns all
the descendants of the currently selected element. All of these methods take an
optional CSS selector string to limit the result to elements that match the selector.
For example, $(".column").find("span") returns all the descendants
of a class column.

If you want to access an individual element of a group, use the get() method,
which takes the index of the element as a parameter. The $("span").get(0)
method, for example, returns the first element out of the selected group.

Handling events

Next we will learn about event handlers. An event handler is a JavaScript function
that is invoked when a particular event happens, for example, when a button is
clicked or a form is submitted. jQuery provides a large set of methods to attach
handlers to events; events of particular interest in our application are mouse clicks

handlers to events; events of particular interest in our application are mouse clicks

and form submissions. To handle the event of clicking on an element, we select this
element and call the click() method on it. This method takes an event handler
function as a parameter. Let's try this in our Chrome developer console.

Open the user profile page of the application and insert a button after the tweet:

 >>> $(".well span").after("<button id=\"test-
button\">Click me!</button>")

Note

Note that we had to escape the quotations in the strings passed to the after()
method.

If you try to click on this button, nothing will happen, so let's attach an event
handler to it:

 >>> $("#test-button").click(function () { alert("You
clicked me!"); })

Now, when you click on the button, a message box will appear. How did this work?

The argument that we passed to the click() method may look a bit complicated,
so let's examine it again:

 function () { alert("You clicked me!"); }

This appears to be a function declaration, but without a function name. Indeed, this
construct creates what is called an anonymous function in JavaScript terminology
and it is used when you need to create a function on the fly and pass it as an
argument to another function. We could have avoided using anonymous functions
and declared the event handler as a regular function:

 >>> function handler() { alert("You clicked me!"); }

 >>> $("#test-button").click(handler)

The preceding code achieves the same effect, but the first one is more concise and
compact. I highly recommend you to get used to anonymous functions in JavaScript
(if you are not already), as I'm sure you will appreciate this construct and find it
more readable after using it for a while.

Handling form submissions is very similar to handling mouse clicks. First you select
the form, then you call the submit() method on it, and then you pass the handler
as an argument. We will use this method many times while adding AJAX features to
our project in later sections.

Sending AJAX requests

Before we finish this section, let's talk about AJAX requests. jQuery provides many
ways to send AJAX requests to the server. There is, for example, the load()
method that takes a URL and loads the page at this URL into the selected element.
There are also methods to send the GET or POST requests and to receive the results.
We will examine these methods in more depth while implementing AJAX features in
our project.

What next?

This wraps up our quick introduction to jQuery. The information provided in this
section will be enough to continue with this chapter, and once you finish this
chapter, you will be able to implement many interesting AJAX features on your own.
However, please keep in mind that this jQuery introduction is only the tip of the
iceberg. If you want a comprehensive treatment of the jQuery framework, I highly
recommend you read Learning jQuery from Packt Publishing, as it covers jQuery in
much more detail. You can find out more about this book at
http://www.packtpub.com/jQuery.

http://www.packtpub.com/jQuery

Implementing the searching of tweets

We will start introducing AJAX in our application by implementing live searches. The
idea behind this feature is simple: when the user types a few keywords into a text
field and clicks on search, a script works behind the scenes to fetch the search
results and presents them on the same page. The search page does not reload, thus
saving bandwidth, and provides a better and more responsive user experience.

Before we start implementing this, we need to keep in mind an important rule while
working with AJAX: write your application so that it works without AJAX and then
introduce AJAX to it. If you do so, you ensure that everyone will be able to use your
application, including users who don't have JavaScript enabled and those who use
browsers without AJAX support.

Implementing a searching

So, before we work with AJAX, let's write a simple view that searches bookmarks by
title. First of all, we need to create a search form, so open the tweets/forms.py
file and add the following class to it:

class SearchForm(forms.Form):
query = forms.CharField(label='Enter a keyword to search for',
widget=forms.TextInput(attrs={'size': 32, 'class':'form-
control'}))

As you can see, it's a pretty straightforward form class with only one text field. This
field will be used by the user to enter search keywords. Next, let's create a view to
conduct the search. Open the tweets/views.py file and enter the following code
into it:

class Search(View):
 """Search all tweets with query /search/?query=<query> URL"""
 def get(self, request):
 form = SearchForm()
 params = dict()
 params["search"] = form
 return render(request, 'search.html', params)

 def post(self, request):
 form = SearchForm(request.POST)
 if form.is_valid():
 query = form.cleaned_data['query']
 tweets = Tweet.objects.filter(text__icontains=query)
 context = Context({"query": query, "tweets": tweets})

 return_str =
render_to_string('partials/_tweet_search.html', context)
 return HttpResponse(json.dumps(return_str),
content_type="application/json")
 else:
 HttpResponseRedirect("/search")

Apart from a couple of method calls, the view should be very easy to understand. If
you look at the get request, it is pretty simple, as it prepares the search form and
then renders it.

The post() method is where all the magic happens. When we are rendering the
search result, it is just a layout rendering with the search form, that is, if you take a
look at the new file we created called search.html, you can see the following:

{% extends "base.html" %}
{% load staticfiles %}
{% block content %}

<div class="row clearfix">
 <div class="col-md-6 col-md-offset-3 column">
 <form id="search-form" action="" method="post">{%
csrf_token %}
 <div class="input-group input-group-sm">
 {{ search.query.errors }}
 {{ search.query }}

 <button class="btn btn-search"
type="submit">search</button>

 </div><!-- /input-group -->
 </form>
 </div>
 <div class="col-md-12 column tweets">
 </div>
</div>
{% endblock %}
{% block js %}
 <script src="{% static 'js/search.js' %}"></script>
{% endblock %}

If you look carefully, you will see the inclusion of a new section named {% block
js %}. The concept used here is the same as of the {% block content %} block,

js %}. The concept used here is the same as of the {% block content %} block,

that is, what is declared here will be rendered in the base.html file. Taking it
further, and looking at the modified base.html file, we can see the following:

{% load staticfiles %}
 <html>
 <head>
 <link href="{% static 'css/bootstrap.min.css' %}"
 rel="stylesheet" media="screen">
 {% block css %}
 {% endblock %}
 </head>
 <body>
 <nav class="navbar navbar-default" role="navigation">
 MyTweets
 <p class="navbar-text navbar-right">User Profile
Page</p>
 </nav>
 <div class="container">
 {% block content %}
 {% endblock %}
 </div>
 <nav class="navbar navbar-default navbar-fixed-bottom"
role="navigation">
 <p class="navbar-text navbar-right">Footer </p>
 </nav>
 <script src="{% static 'js/jquery-2.1.1.min.js'
%}"></script>
 <script src="{% static 'js/bootstrap.min.js'
%}"></script>
 <script src="{% static 'js/base.js' %}"></script>
 {% block js %}
 {% endblock %}
 </body>
 </html>

The preceding code clearly shows the two new content blocks, which are as follows:

{% block css %}
 {% endblock %}
 {% block js %}
{% endblock %}

They are used to include the respective file types and to render the file types with

They are used to include the respective file types and to render the file types with

the base, so that maintaining the project becomes much simpler using the simple
rule of declaring just one CSS and JavaScript file per page. We will implement this
later in the book with the concepts that call assets pipeline .

Now, coming back to our AJAX search feature, you will see that this search.html
file is similar to the tweet.html file.

For the search feature, we will create a new URL, which we need to append to the
following urls.py file:

url(r'^search/$', Search.as_view()),
urls.py
from django.conf.urls import patterns, include, url
from django.contrib import admin
from tweet.views import Index, Profile, PostTweet,
HashTagCloud, Search

admin.autodiscover()

urlpatterns = patterns('',
url(r'^$', Index.as_view()),
url(r'^user/(\w+)/$', Profile.as_view()),
url(r'^admin/', include(admin.site.urls)),
url(r'^user/(\w+)/post/$', PostTweet.as_view()),
url(r'^hashTag/(\w+)/$', HashTagCloud.as_view()),
url(r'^search/$', Search.as_view()),
)

In the search.html file, we defined the search.js method; let's create this
JavaScript file, which actually makes the AJAX request:

search.js

$('#search-form').submit(function(e){
$.post('/search/', $(this).serialize(), function(data){
$('.tweets').html(data);
});
e.preventDefault();
});

This JavaScript code gets triggered when the form is submitted, it makes an AJAX
post request to the /search user with the serialized form data, and it gets the
response. Then, with the response it gets, it appends the data to the element that
has the class tweets.

If we open the user search in the browser, it will look like the following screenshot:

Now, wait! What happens when this form is submitted?

The AJAX request goes to the post() method of the search class, which is as
follows:

def post(self, request):
 form = SearchForm(request.POST)
 if form.is_valid():
 query = form.cleaned_data['query']
 tweets = Tweet.objects.filter(text__icontains=query)
 context = Context({"query": query, "tweets": tweets})
 return_str =
render_to_string('partials/_tweet_search.html', context)
 return HttpResponse(json.dumps(return_str),
content_type="application/json")
 else:
 HttpResponseRedirect("/search")

We are checking the form validation after we extract from the request.POST
method; if the form is valid, the query is extracted from the form object.

Then, the tweets = Tweet.objects.filter(text__icontains===query)
method searches for the substring match for the given query term.

Searches are conducted using a method called filter in the Tweets.objects
module. You can think of it as the equivalent of the SELECT statements in Django
models. It receives the search criteria in its arguments and returns the search
results. The name of each argument must adhere to the following naming
convention:

field__operator

Note that the field and operator variables are separated by two underscores:
the field, which is the name of the field that we want to search by, and operator,
which is the lookup method that we want to use. Here is a list of the commonly used
operators:

exact: This is the value of the argument that is an exact match of the field
contains: This field contains the value of the argument
startswith: This field starts with the value of the argument
lt: This field is less than the value of the argument
gt: This field is greater than the value of the argument

Also, there are case-insensitive versions of the first three operators: iexact,
icontains, and istartswith that can be included in the list as well.

One thing that we are doing is totally different now, which is the following:

context = Context({"query": query, "tweets": tweets})
return_str = render_to_string('partials/_tweet_search.html',
context)
return HttpResponse(json.dumps(return_str),
content_type="application/json")

Our goal was to load the search results without reloading or refreshing the search
page. If so, how our previous render method will help us? It can't. We need some
methods that can help us send the date to the browser without reloading it.

We widely use the concepts in web development called partials . They are generally
small snippets of HTML code generated on the server side, are rendered as JSON,
and then they get appended to the existing DOM with the help of JavaScript.

To implement this method, we will first create a folder called partials in the existing
template folder, a _tweet_search.html file with the following content:

{% for tweet in tweets %}
 <div class="well">
 {{ tweet.text }}
 </div>
{% endfor %}
{% if not tweets %}
 <div class="well">
 No Tweet found.
 </div>
{% endif %}

The code will render the entire tweet object within a well box or, if no tweet object
is found, it will render No tweet Found inside the well box.

The preceding concept is to render a partial as a string in the view, and if we need to
pass any parameters for the render, we need to pass them in the first place with the
call to generate the string from partials. To pass the parameters for partials, we
need to create a context object and then pass our parameters:

context = Context({"query": query, "tweets": tweets})
return_str = render_to_string('partials/_tweet_search.html',
context)

First, we will create the context with the query (which we will use later) and
tweets parameters and use the render_to_string() function. Then, we can use
JSON to dump the string to the HttpResponse() function with the following:

return HttpResponse(json.dumps(return_str),
content_type="application/json")

The list of imports are as follows:

from django.views.generic import View
from django.shortcuts import render
from user_profile.models import User
from models import Tweet, HashTag
from tweet.forms import TweetForm, SearchForm
from django.http import HttpResponseRedirect
from django.template.loader import render_to_string
from django.template import Context
from django.http import HttpResponse
import json

That's it! We completed a basic AJAX-based search for our tweets. Searching for
django listed the two tweets we created, as shown in the following screenshot:

Go ahead and play with the search engine, and I'm sure you will fall more in love
with Django.

We now have a functional (albeit very basic) search page. The search functionality
itself will be improved during later chapters, but what matters to us now is
introducing AJAX to the search form, so that results are fetched behind the scenes
and are presented to the user without reloading the page. Thanks to our modular
code, this task will turn out to be much simpler than it may seem.

Implementing the live searching of
tweets

As we conducted a simple search in the previous section, we will now implement the
live search, which is technically the same, but the only difference is that the search
form will be submitted with every key stroke and the results will be loaded in real,
time.

To implement live searches, we need to do the following two things:

We need to intercept and handle the event of submitting the search form.
This can be done using the submit() method of jQuery.
We need to use AJAX to load the search results in the background and insert
them in the page.

jQuery offers a method called load() that retrieves a page from the server and
inserts its contents into the selected element. In its simplest form, the function
takes the URL of the remote page to be loaded as a parameter.

We will implement the live search on hashtags, that is, we will create a new page
that is the same as the search page that we just created, but this will be for hashtags
and we will use a live hashtag suggestion (autocomplete for hashtag). Before we
begin, we need the Twitter typeahead JavaScript library for the same.

Download the latest version of this library from
http://twitter.github.io/typeahead.js/.

For this chapter, we downloaded the version 10.05 of the library. Download it and
save it to your current JavaScript folder.

First of all, let's modify our search view a little, so that it only returns the search
results without the rest of the search page when it receives an additional GET
variable called AJAX. We do so to enable the JavaScript code on the client side to
easily retrieve search results without the rest of the search page HTML format. This
can be done by simply using the bookmark_list.html template instead of the
search.html template when requested.

GET contains the key AJAX parameter. Open the bookmarks/views.py file and
modify the search_page parameter (toward the end), so that it becomes as
follows:

def search_page(request):
 [...]
 variables = RequestContext(request, {

http://twitter.github.io/typeahead.js/

 'form': form,
 'bookmarks': bookmarks,
 'show_results': show_results,
 'show_tags': True,
 'show_user': True
 })
 if request.GET.has_key('AJAX'):):):
 return render_to_response('bookmark_list.html', variables)
 else:
 return render_to_response('search.html', variables)

Next, create a file called search.js in the site_media directory and link it to the
templates/search.html file like this:

{% extends "base.html" %}
 {% block external %}
 <script type="text/javascript" src="/site_media/search.js">
 </script>
 {% endblock %}
{% block title %}Search Bookmarks{% endblock %}
{% block head %}Search Bookmarks{% endblock %}
[...]

Now for the fun part! Let's create a function that loads the search results and inserts
them into the corresponding div tag. Write the following code in the
site_media/search.js file:

function search_submit() {
 var query = $("#id_query").val();
 $("#search-results").load(
 "/search/?AJAX&query=" + encodeURIComponent(query)
);
return false;
}

Let's go through this function line by line:

The function first gets the query string from the text field using the val()
method.
We use the load() method to get the search results from the search_page
view and to insert the search results into the #search-results div. The
request URL is constructed by first calling the encodeURIComponent
parameter on query, which works exactly like the urlencode filter we used in

parameter on query, which works exactly like the urlencode filter we used in

the Django templates. Calling this function is important to ensure that the
constructed URL remains valid even if the user enters special characters into
the text field, such as &. After the escape query, we concatenate it with the
/search/?AJAX&query= parameter. This URL invokes the search_page
view and passes the GET variable's AJAX parameter and query to it. The view
returns the search results and the load() method in turn loads the results
into the #search-results div.
We return False from the function to tell the browser not to submit the form
after calling our handler. If we don't return False in the function, the browser
will continue to submit the form as usual and we don't want that.

One little detail remains: where and when should you attach the search_submit
parameter to the submit event of the search form? A rule of thumb when writing
JavaScript is that we cannot manipulate elements in the document tree before the
document finishes loading. Therefore, our function must be invoked as soon as the
search page is loaded. Fortunately for us, jQuery provides a method to execute a
function when the HTML document is loaded. Let's utilize it by appending the
following code to the site_media/search.js file:

$(document).ready(function () {
 $("#search-form").submit(search_submit);
});

The $(document) function selects the document element of the current page.
Note that there are no quotations around the document variable; it's a variable
provided by the browser, not a string.

The ready() method takes a function and executes it as soon as the selected
element finishes loading. So, in effect, we are telling jQuery to execute the passed
function as soon as the HTML document is loaded. We pass an anonymous function
to the ready() method, and this function simply binds the search_submit
parameter to the submit event of the #search-form form.

That's it. We've implemented live searches with less than fifteen lines of code. To
test the new functionality, navigate to http://127.0.0.1:8000/search/,
submit queries, and note how the results are displayed without reloading the page.

The information covered in this section can be applied to any form that needs to be
processed in the background without reloading the page. You can, for example,
create a comment form with a preview button that loads the preview in the same
page without reloading. In the next section, we will enhance the user page to let
users edit their bookmarks in place without navigating away from the user page.

Editing a tweet in place without loading
a separate page

Editing posted content is a very common task on websites. It's usually implemented
by offering an edit link next to the content. When clicked on, this link takes the user
to a form located at another page, where the content can be edited. When the user
submits the form, they are redirected back to the content page.

Imagine, on the other hand, that you could edit content without navigating away
from the content page. When you click on the edit button, the content is replaced
with a form. When you submit the form, it disappears and the updated content
appears in its place. Everything happens on the same page; editing the form's
rendering and submissions are done using JavaScript and AJAX. Wouldn't such a
workflow be more intuitive and responsive?

The preceding technique described is called in-place editing . It now finds its way in
Web applications and becomes more common. We will implement this feature in our
application by letting the user edit their bookmarks in place on the user page.

Since our application doesn't support the editing of bookmarks yet, we will
implement this first and then modify the editing procedure to work in place.

Implementing bookmark editing

We already have most of the parts that are needed to implement bookmark editing.
If you recall from the previous chapter, in the bookmarks/views.py file, we
implemented the bookmark_save_page view in such a way that if the user tries to
save the same URL more than once, the same bookmark is updated rather than
being duplicated. This was easy to do thanks to the get_or_create() method
provided by data models. This little detail greatly simplifies the implementation of
bookmark editing. Here is what we need to do:

We pass the URL of the bookmark that we want to edit as a GET variable
named URL to the bookmark_save_page view.
We modify the bookmark_save_page view, so that it populates the fields of
the bookmark form if it receives the GET variable. The form is populated with
the data of the bookmark that corresponds to the passed URL.

When the populated form is submitted, the bookmark will be updated, as we
explained earlier, because it will seem to be that the user submitted the same URL
another time.

Before we implement the preceding described technique, let's reduce the size of
the bookmark_save_page view by moving the part that saves a bookmark to a

the bookmark_save_page view by moving the part that saves a bookmark to a

separate function. We will call this function _bookmark_save. The underscore at
the beginning of the name tells Python not to import this function when the views
module is imported. The function expects a request and a valid form object as
parameters; it saves a bookmark out of the form data and returns this bookmark.

Open the bookmarks/views.py file and create the following function; you can cut
and paste the code from the bookmark_save_page view if you like, as we will not
make any changes to it except for the return statement at the end:

def _bookmark_save(request, form):
 # Create or get link.
 link, dummy = \
 Link.objects.get_or_create(url=form.clean_data['url'])
 # Create or get bookmark.
 bookmark, created = Bookmark.objects.get_or_create(
 user=request.user,
 link=link
)
 # Update bookmark title.
 bookmark.title = form.clean_data['title']
 # If the bookmark is being updated, clear old tag list.
 if not created:
 bookmark.tag_set.clear()
 # Create new tag list.
 tag_names = form.clean_data['tags'].split()
 for tag_name in tag_names:
 tag, dummy = Tag.objects.get_or_create(name=tag_name)
 bookmark.tag_set.add(tag)
 # Save bookmark to database and return it.
 bookmark.save()
 return bookmark
 Now in the same file, replace the code that you removed
from bookmark_save_page
 with a call to _bookmark_save :
 @login_required
 def bookmark_save_page(request):
 if request.method == 'POST':
 form = BookmarkSaveForm(request.POST)
 if form.is_valid():
 bookmark = _bookmark_save(request, form)
 return HttpResponseRedirect(
 '/user/%s/' % request.user.username

)
 else:
 form = BookmarkSaveForm()
 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('bookmark_save.html',
variables)

The current logic in the bookmark_save_page view works like this:

[Pseudo Code]

if there is POST data:
 Validate and save bookmark.
 Redirect to user page.
else:
 Create an empty form.
Render page.

To implement bookmark editing, we need to slightly modify the logic, as follows:

[Pseudo Code]

if there is POST data:
 Validate and save bookmark.
 Redirect to user page.
 else if there is a URL in GET data:
 Create a form an populate it with the URL's bookmark.
 else:
 Create an empty form.
Render page.

Let's translate the preceding pseudo code into Python. Modify the
bookmark_save_page view in the bookmarks/views.py file, so that it looks like
the following code (the new code is highlighted):

from django.core.exceptions import ObjectDoesNotExist
@login_required
def bookmark_save_page(request):
 if request.method == 'POST':
 form = BookmarkSaveForm(request.POST)
 if form.is_valid():
 bookmark = _bookmark_save(request, form)

 return HttpResponseRedirect(
 '/user/%s/' % request.user.username)
 elif request.GET.has_key('url'):):):
 url = request.GET['url']
 title = ''
 tags = ''
 try:
 link = Link.objects.get(url=url)
 bookmark = Bookmark.objects.get(
 link=link,
 user=request.user
)
 title = bookmark.title
 tags = ' '.join(
 tag.name for tag in bookmark.tag_set.all()
)
 except ObjectDoesNotExist:
 pass
 form = BookmarkSaveForm({
 'url': url,
 'title': title,
 'tags': tags
 })
 else:
 form = BookmarkSaveForm()
 variables = RequestContext(request, {
 'form': form
 })
 return render_to_response('bookmark_save.html',
variables)

This new section of the code first checks whether a GET variable called URL exists. If
this is the case, it loads the corresponding Link and Bookmark objects of this URL
and binds all the data to a bookmark saving form. You may wonder why we load the
Link and Bookmark objects in a try-except construct that silently ignores
exceptions.

Indeed, it's perfectly valid to raise an HTTP 404 exception if no bookmark was found
for the requested URL. However, our code chooses to only populate the URL field in
this situation, leaving the title and tags fields empty.

Now, let's add edit links next to each bookmark in the user page. Open the
templates/bookmark_list.html file and insert the highlighted code:

{% if bookmarks %}
 <ul class="bookmarks">
 {% for bookmark in bookmarks %}

 {{ bookmark.title|escape }}
 {% if show_edit %}
 <a href="/save/?url={{ bookmark.link.url|urlencode
}}"
 class="edit">[edit]
 {% endif %}

 {% if show_tags %}
 Tags:
 {% if bookmark.tag_set.all %}
 <ul class="tags">
 {% for tag in bookmark.tag_set.all %}

 {{ tag.name|escape }}
 {% endfor %}

 {% else %}
 None.
 {% endif %}

[...]

Note how we constructed edit links by appending the bookmark's URL to
/save/?url= {{ bookmark.link.url|urlencode }}.

Also, since we only want to show edit links on the user's page, the template renders
these links only when the show_edit flag is set to True. Otherwise, it wouldn't
make sense to let the user edit other people's links. Now open the
bookmarks/views.py file and add the show_edit flag to the template variables
in the user_page flag:

def user_page(request, username):
 user = get_object_or_404(User, username=username)
 bookmarks = user.bookmark_set.order_by('-id')
 variables = RequestContext(request, {
 'bookmarks': bookmarks,
 'username': username,
 'show_tags': True,

 'show_edit': username == request.user.username,
 })
return render_to_response('user_page.html', variables)

The username == request.user.username expression evaluates to True only
when users view their own page, and this is precisely what we want.

Finally, I suggest you reduce the font size of the edit links a little. Open the
site_media/style.css file and append the following to its end:

ul.bookmarks .edit {
 font-size: 70%;
}

And we are done! Feel free to navigate to your user page and experiment with
editing your bookmarks before we continue.

Implementing in-place editing of bookmarks

Now that we have bookmark editing implemented, let's move to the exciting part:
adding in-place editing with AJAX!

Our approach to this task will be as follows:

We will intercept the event of clicking on an edit link and use AJAX to load a
bookmark editing form from the server. Then we will replace the bookmark on
the page with the editing form.
When the user submits the edit form, we will intercept the submission event
and use AJAX to send the updated bookmark to the server.
The server saves the bookmark and returns the HTML representation of the
new bookmark. We will then replace the edit form on the page with the
markup returned by the server.

We will implement the preceding procedure using an approach very similar to live
searching. First, we will modify the bookmark_save_page view, so that it responds
to AJAX requests when a GET variable called AJAX exits. Next, we will write
JavaScript code to retrieve an edit form from the view, which posts bookmark data
back to the server when the user submits this form.

Since we want to return the markup of an edit form to the AJAX script from the
bookmark_save_page view, let's restructure our templates a little. Create a file
called bookmark_save_form.html in templates and move the bookmark saving
form from the bookmark_save.html file to this new file:

<form id="save-form" method="post" action="/save/">
 {{ form.as_p }}

 <input type="submit" value="save" />
</form>

Note that we also changed the action attribute of the form to /save/ and gave it
an ID. This is necessary for the form to work on the user page as well as on the
bookmark submission page.

Next, include this new template in the bookmark_save.html file:

{%extends "base.html" %}
{%block title %}Save Bookmark{% endblock %}
{%block head %}Save Bookmark{% endblock %}
{%block content %}
{%include 'bookmark_save_form.html' %}
{%endblock %}

Ok , now we have the form in a separate template. Let's update the
bookmark_save_page view to handle both the normal and AJAX requests. Open
the bookmarks/views.py file and update the view, so that it looks like the
following (modified with the new lines that are highlighted):

def bookmark_save_page(request):
 AJAX = request.GET.has_key('AJAX')))
 if request.method == 'POST':
 form = BookmarkSaveForm(request.POST)
 if form.is_valid():
 bookmark = _bookmark_save(form)
 if AJAX:
 variables = RequestContext(request, {
 'bookmarks': [bookmark],
 'show_edit': True,
 'show_tags': True
 })
 return render_to_response('bookmark_list.html',
variables)
 else:
 return HttpResponseRedirect(
 '/user/%s/' % request.user.username
)
 else:
 if AJAX:
 return HttpResponse('failure')
 elif request.GET.has_key('url'):

 url = request.GET['url']
 title = ''
 tags = ''
 try:
 link = Link.objects.get(url=url)
 bookmark = Bookmark.objects.get(link=link,
user=request.user)
 title = bookmark.title
 tags = ' '.join(tag.name for tag in
bookmark.tag_set.all())
 except:::
 pass
 form = BookmarkSaveForm({
 'url': url,
 'title': title,
 'tags': tags
 })
 else:
 form = BookmarkSaveForm()
 variables = RequestContext(request, {
 'form': form
 })
 if AJAX:
 return render_to_response(
 'bookmark_save_form.html',
 variables
)
 else:
 return render_to_response(
 'bookmark_save.html',
 variables
)

Let's examine each highlighted section separately:

AJAX = request.GET.has_key('AJAX')

At the beginning of the method, we will check whether a GET variable named AJAX
exists. We will store the result in a variable called AJAX. Later in the method, we can
check whether we are handling an AJAX request or not, using this variable:

if condition:
 if form.is_valid():

 bookmark = _bookmark_save(form)
 if AJAX:
 variables = RequestContext(request, {
 'bookmarks': [bookmark],
 'show_edit': True,
 'show_tags': True
 })
 return render_to_response('bookmark_list.html', variables)
 else:
 return HttpResponseRedirect('/user/%s/' %
request.user.username)
 else:
 if AJAX:
 return HttpResponse('failure')

If we receive a POST request, we check whether the submitted form is valid or not.
If it is valid, we save the bookmark. Next, we check whether this is an AJAX request.
If it is, we render the saved bookmark using the bookmark_list.html template
and return it to the requesting script. Otherwise, it is a normal form submission, so
we redirect the user to their user page. On the other hand, if the form is not valid,
we only act as if it's an AJAX request by returning the string 'failure', which we
will respond to by displaying an error dialog in JavaScript. We don't need to do
anything if it's a normal request because the page will be reloaded and the form will
display any errors in the input:

if AJAX:
 return render_to_response('bookmark_save_form.html',
variables)
 else:
 return render_to_response('bookmark_save.html', variables)

This is checked at the end of the method. The execution reaches this point if there is
no POST data, which means that we should render a form and return it. We use the
bookmark_save_form.html template if it's an AJAX request and the
bookmark_save method, otherwise save it as an HTML file.

Our view is now ready to serve AJAX requests as well as normal page requests. Let's
write the JavaScript code that will take advantage of the updated view. Create a
new file called bookmark_edit.js in the site_media profile. However, before
we add any code to it, let's link the bookmark_edit.js file to the
user_page.html template. Open the user_page.html file and modify it as
follows:

{% extends "base.html" %}

 {% block external %}
 <script type="text/javascript"
src="/site_media/bookmark_edit.js">
 </script>
 {% endblock %}
 {% block title %}{{ username }}{% endblock %}
 {% block head %}Bookmarks for {{ username }}{% endblock %}
 {% block content %}
 {% include 'bookmark_list.html' %}
 {% endblock %}

We have to write two functions in the bookmark_edit.js file:

bookmark_edit: This function handles the clicks on edit links. It loads an edit
form from the server and replaces the bookmark with this form.
bookmark_save: This function handles the submissions of edit forms. It
sends form data to the server and replaces the form with the bookmark HTML
returned by the server.

Let's start with the first function. Open the site_media/bookmark_edit.js file
and write the following code in it:

function bookmark_edit() {
 var item = $(this).parent();
 var url = item.find(".title").attr("href");
 item.load("/save/?AJAX&url=" + escape(url), null, function ()
{
 $("#save-form").submit(bookmark_save);
 });
 return false;
}

Because this function handles click events on an edit link, the this variable refers
to the edit link itself. Wrapping it in the jQuery $() function and calling the
parent() function returns the parent of the edit link, which is the element of
the bookmark (try it in the Firebug console to see the same for yourself).

After retrieving a reference to the bookmark's element, we obtain a reference
to the bookmark's title and extract the bookmark's URL from it using the attr()
method.

Next, we use the load() method to put an editing form in place of the bookmark's
HTML file. This time, we are calling the load() method with two extra arguments in
addition to the URL. The load() function takes two optional parameters, which are

addition to the URL. The load() function takes two optional parameters, which are

as follows:

It takes an object of key or value pairs if we are sending a POST request. Since
we get the edit form from the server-side view using a GET request, we pass
null for this parameter.
It takes a function that is called when jQuery finishes loading the URL into the
selected element. The function we are passing attaches the
bookmark_save() method (which we are going to write next) to the form
that we've just retrieved.

Finally, the function returns False to tell the browser not to follow the edit link.
Now we need to attach the bookmark_edit() function to the event of clicking an
edit link using $(document).ready():

$(document).ready(function () {
 $("ul.bookmarks .edit").click(bookmark_edit);
});

If you try to edit a bookmark in the user page after writing this function, an edit
form should appear, but you should also get a JavaScript error message in the
Firebug console because the bookmark_save()function is not defined, so let's
write it:

function bookmark_save() {
 var item = $(this).parent();
 var data = {
 url: item.find("#id_url").val(),
 title: item.find("#id_title").val(),
 tags: item.find("#id_tags").val()
 };
 $.post("/save/?AJAX", data, function (result) {
 if (result != "failure") {
 item.before($("li", result).get(0));
 item.remove();
 $("ul.bookmarks .edit").click(bookmark_edit);
 }
 else {
 alert("Failed to validate bookmark before saving.");
 }
 });
 return false;
}

Here, the this variable refers to the edit form because we handle the event of

Here, the this variable refers to the edit form because we handle the event of

submitting a form. The function starts by retrieving a reference to the form's
parent, which is again the bookmark's element. Next, the function retrieves
the updated data from the form using the ID of each form field and the val()
method.

Then it uses a method called $.post() to send data back to the server. Finally, it
returns False to prevent the browser from submitting the form.

As you may have guessed, the $.post() function is a jQuery method that sends
POST requests to the server. It takes three parameters, which are as follows:

The URL of the target of the POST request.
An object of key/value pairs that represents POST data.
A function that is invoked when the request is done. The server response is
passed to this function as a string parameter.

It's worth mentioning that jQuery provides a method called $.get() to send a GET
request to the server. It takes the same types of parameters as the $.post()
function. We use the $.post() method to send the updated bookmark data to the
bookmark_save_page view. As discussed a few paragraphs ago, the view returns
the update bookmark HTML if it succeeds in saving it. Otherwise, it returns the
failure string.

Therefore, we check whether the result returned from the server is failure or not.
If the request succeeds, we insert the new bookmark before the old one using the
before() method and remove the old bookmark from the HTML document using
the remove() method. If, on the other hand, the request fails, we display an alert
box displaying the failure.

Several little things remain before we finish this section. Why do we insert the
$("li",result).get(0) method instead of the result itself? If you check the
bookmark_save_page view, you will see that it uses the bookmark_list.html
template to construct the bookmark's HTML. However, the bookmark_list.html
template returns the bookmark element wrapped in an tag. Basically,
the $("li", result).get(0) method tells jQuery to extract the first
element in the result and this is the element that we want. As you see from the
preceding snippet, you can use the jQuery $() function to select the elements from
an HTML string by passing this string as a second argument to the function.

The bookmark_submit template is attached to its event from within the
bookmark_edit template, so we don't need to do anything about it in the
$(document).ready() method.

Lastly, after loading the updated bookmark into the page, we call the

Lastly, after loading the updated bookmark into the page, we call the

$("ul.bookmarks.edit").click(bookmark_edit) method again to attach
the bookmark_edit template to the newly loaded edit link. If you don't do so and
try to edit a bookmark twice, the second click on the edit link will take you to a
separate form page.

When you finish writing the JavaScript code, open your browser and go to your user
page to experiment with the new feature. Edit the bookmarks, save them, and note
how the changes are immediately reflected on the page without any reloading.

Now that you have completed this section, you should have a good understanding
of how in-place editing is implemented. There are many other scenarios where this
feature can be useful, for example, it can be used to edit an article or a comment on
the same page without navigating away to a form located on a different URL.

In the next section, we will implement a third common AJAX feature that helps the
user enter tags while submitting a bookmark.

Autocompletion of hashtags while
submitting a tweet

The last AJAX enhancement that we are going to implement in this chapter is
autocompletion of tags. The concept of autocompletion found its way into web
applications when Google released their Suggest searching interface. Suggest works
by displaying the most popular search queries below the search input field based on
what the user has typed so far. It's also similar to how code editors in integrated
development environments offer code completion suggestions based on what you
type. This feature saves time by letting the user type a few characters of the word
they want and then lets them select it from a list without having to type it in
completely.

We will implement this feature by offering suggestions when the user enters tags
while submitting a bookmark, but instead of writing this feature from scratch, we
are going to use a jQuery plugin to implement it. jQuery enjoys a large and
continually growing list of plugins that provides a variety of features. Installing a
plugin is no different from installing jQuery itself. You download one (or more) files
and link them to your template and then you write a few lines of JavaScript code to
activate the plugin.

You can browse the list of the available jQuery plugins by navigating to
http://docs.jquery.com/Plugins. Search for the autocomplete plugin in the list and
download it, or you can directly grab it from http://bassistance.de/jquery-
plugins/jquery-plugin-autocomplete/.

You will get a zip archive with many files in it. Extract the following files (which can
be found in the jquery/autocomplete/scroll directory) to the site_media
directory:

jquery.autocomplete.css
dimensions.js
jquery.bgiframe.min.js
jquery.autocomplete.js

Since we want to offer the autocomplete feature on the bookmark submission page,
create an empty file called tag_autocomplete.js in the site_media folder.
Then open the templates/bookmark_save.html file and link all of the preceding
files to it:

{% extends "base.html" %}
 {% block external %}
 <link rel="stylesheet"
 href="/site_media/jquery.autocomplete.css" type="text/css" />

http://docs.jquery.com/Plugins
http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/

 <script type="text/javascript"
 src="/site_media/dimensions.js"> </script>
 <script type="text/javascript"
 src="/site_media/jquery.bgiframe.min.js"> </script>
 <script type="text/javascript"
 src="/site_media/jquery.autocomplete.js"> </script>
 <script type="text/javascript"
 src="/site_media/tag_autocomplete.js"> </script>
 {% endblock %}
 {% block title %}Save Bookmark{% endblock %}
 {% block head %}Save Bookmark{% endblock %}
[...]

We now finished installing the plugin. If you read its documentation, you will find
that this plugin is activated by calling a method named autocomplete() on a
selected input element. The autocomplete() function takes the following
parameters:

A server-side URL : For this, the plugin sends a GET request to this URL with
what has been typed so far and expects the server to return a set of
suggestions.
An object that can be used to specify various options : Options that are of
interest to us are multiple. This option has a Boolean variable that tells the
plugin that the input field is used to enter multiple values (remember that we
use the same text field to enter all the tags) and multiple separators that are
used to tell the plugin which string separates multiple entries. In our case, it's
a single space character.

So before activating the plugin, we need to write a view that receives user input and
returns a set of suggestions. Open the bookmarks/views.py file and append the
following to its end:

def AJAX_tag_autocomplete(request):
 if request.GET.has_key('q'):):):
 tags = \
 Tag.objects.filter(name__istartswith=request.GET['q'])[:10]
 return HttpResponse('\n'.join(tag.name for tag in tags))
return HttpResponse()

The autocomplete() plugin sends user input in a GET variable named q. Therefore,
we can verify that this variable exists and build a list of tags whose names begin
with the value of this variable. This is done using the filter() method and the
istartswith operator that we learned about earlier in this chapter. We only take
the first ten results to avoid overwhelming the user with suggestions and to reduce

the first ten results to avoid overwhelming the user with suggestions and to reduce

the bandwidth and performance costs. Finally, we join the suggestions into a single
string separated by newlines, wrap the string into an HttpResponse object, and
return it.

With the suggestion view ready, add a URL entry to the plugin in the urls.py file,
as follows:

urlpatterns = patterns('',
 # AJAX
 (r'^AJAX/tag/autocomplete/$', AJAX_tag_autocomplete),
)

Now activate the plugin on the tags input field by entering the following code in the
site_media/tag_autocomplete.js file:

$(document).ready(function () {
 $("#id_tags").autocomplete(
 '/AJAX/tag/autocomplete/',
 {multiple: true, multipleSeparator: ' '}
);
});

The code passes an anonymous function to the $(document).ready() method.
This function invokes the autocomplete() function on the tags input field, passing
the arguments that we talked about earlier.

These few lines of code are all that we need in order to implement autocompletion
of tags. To test the new feature, navigate to the bookmark submission form at
http://127.0.0.1:8000/save/ and try to enter a character or two in the tags
field. Suggestions should appear based on the tags available in your database.

With this feature, we finish this chapter. We covered a lot of material and learned
about many exciting technologies and techniques. After reading the chapter, you
should be able to think of and implement many other enhancements to the user
interface, such as the ability to delete bookmarks from the user page or to do live
browsing of bookmarks by tags among, many other things.

The next chapter will shift to a different topic: we will let users vote and comment
on their favorite bookmarks and the front page of our application won't remain as
empty as it is now!

Summary

Phew! This was a long chapter, but hopefully you learned a lot from it! We started
the chapter with learning about the jQuery framework and how to integrate it in to
our Django project. After that, we implemented three exciting features in our
bookmarking application: live searching, in-place editing, and autocompletion.

The next chapter is going to be another exciting one. We will let users submit
bookmarks to the front page and vote for their favorite bookmarks. We will also
enable users to comment on bookmarks. So, read on!

Chapter 7. Following and Commenting

The main idea behind our application is to provide a platform for users to share their
thoughts via tweets. Just letting the user create a new tweet is only one part of it,
and the application is said to be incomplete if users are not able to interact with the
existing tweet. In this chapter, we will do the other part, which is enabling users to
follow a particular user and comment on an existing tweet. You will also learn
several new Django features while working through it.

In this chapter, you will learn about:

Letting users follow another user
Displaying the most followed user

Letting users follow another user

So far, our users are able to discover new tweets by browsing hashtags and user
pages. Let's provide a method for users to follow another user so that they can see,
on their individual homepages, the aggregated tweets from all users they are
following. Let's also enable users to comment on a new tweet.

We will also create a page where users can list popular users by the number of
followers. This feature is important for our application because it will change the
main page from a basic welcome page to a frequently updated list of users, where
users will be able to find trending users and their interesting tweets.

Our strategy for implementing this feature consists of the following:

Creating a data model to store a user and their followers. This model will keep
track of various pieces of information related to the user.
Giving each user a follow button next to their title. We will also create a view
that shows counts, such as the number of tweets a user has made and their
follower count. This involves a considerable amount of work, but the results
will be worth it and we will learn a lot of useful information during the
process.

Let's get started!

At first, what we are going to add is a retweet count to every tweet and to keep
track of all the tweets voted up by the user. To implement this, we need to create a
new UserFollowers data model.

The UserFollowers data model

When a user is followed by another user, we need to store the following information
in the database:

The date on which the user was followed. We need this in order to display the
user who has the highest number of followers over a certain period of time.
The number of followers a user has.
The list of users who are following our user.

This is needed to prevent users from following the same user twice.

For this purpose, we will create a new data model called UserFollowers. Open
user_profile/model.py and add the following class to it:

class UserFollowers(models.Model):
 user = models.ForeignKey(User, unique=True))
 date = models.DateTimeField(auto_now_add=True)
 count = models.IntegerField(default=1))
 followers = models.ManyToManyField(User,
related_name='followers')
 def __str__(self):
 return '%s, %s' % self.user, self.count

This data model utilizes some important features, so we will go through its fields
one by one. The user field is a foreign key that refers back to the user that is being
followed. We want it to be unique so that the same user cannot be followed more
than once.

The date field is of the type models.DateTimeField. As its name suggests, you
can use this field to store a date/time value. The argument auto_now_add tells
Django to automatically set this field to the current date/time when an object of
this data model is first created.

The count field is of the type models.IntegerField. This field holds an integer
value. By using the default=1 parameter with this field, we tell Django to set the
field's value to 1 when an object of this data model is first created.

The following ManyToManyField parameter contains the list of users who followed
this user.

Note

Here, the related_name='followers' parameter must be given as the second
parameter. Both user and follower point to the same class user, which if
distinguished by related name, can give an error such as this, Accessor for field user
clashes with related m2m field User.userfollowers_set.

After entering the data model code into user_profile/models.py file, run the
following command to create its corresponding tables in the database:

 $ python manage.py syncdb

With this, we can store all the information that we need to maintain followers.

Next, we are going to to create a view in which users can follow other users by
clicking on the follow button next to their profile name.

Modify the user profile page accordingly if the visited user is not the same who has
already followed you, then there should be a button to follow the user. If the user is
already being followed, the same button should allow unfollowing.

Let us edit the existing user profile, profile.html.

Adding a user icon against the username, we can use the following Bootstrap
glyphicons. This is the set of icons that is shipped with the default Bootstrap.

 {% block navbar %}
 <p class="navbar-text navbar-right">
 {{
user.username }}
 </p>
 {% endblock %}

We will also design a new tweet post textbox on the profile page. The updated
user_profile.html file is as follows:

 {% extends "base.html" %}
 {% block navbar %}
 <p class="navbar-text navbar-right">
 {{
user.username }}
 </p>
 {% endblock %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-6 col-md-offset-3 column">
 <form id="search-form" action="post/" method="POST">{%
csrf_token %}
 <div class="input-group">
 {{ form.text.errors }}
 {{ form.text }}
 {{ form.country.as_hidden }}

 <button class="btn btn-default"
type="submit">Post</button>

 </div><!-- /input-group -->
 </form>
 </div>
 <h1> </h1>
 <div class="col-md-12 column">
 {% for tweet in tweets %}
 <div class="well">
 {{ tweet.text }}
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

Update the forms.py file to render a new form:

class TweetForm(forms.Form):
 text = forms.CharField(widget=forms.Textarea(attrs={'rows':
1, 'cols': 85, 'class':'form-control', 'placeholder': 'Post a
new Tweet'}), max_length=160)
 country = forms.CharField(widget=forms.HiddenInput())

The updated UI for the form will look like this:

To add the functionality to follow a user, we need to first create another user. We
will follow the same method we used before, that is, via Django Administrator.

One very important thing we have been postponing is user login and registration.
The follow functionality can't be used without it. We will implement Django login
first, and then we will move to the follow functionality.

The user login model

To implement user login, we need to add default URLs for login and registration. We

To implement user login, we need to add default URLs for login and registration. We

will add the following URL patterns in the urls.py file:

 url(r'^login/$', 'django.contrib.auth.views.login'),
 url(r'^logout/$', 'django.contrib.auth.views.logout')

Now, our urls.py file will look like this:

 from django.conf.urls import patterns, include, url
 from django.contrib import admin
 from tweet.views import Index, Profile, PostTweet,
HashTagCloud, Search, SearchHashTag, HashTagJson
 admin.autodiscover()

 urlpatterns = patterns('',
 url(r'^$', Index.as_view()),
 url(r'^user/(\w+)/$', Profile.as_view()),
 url(r'^admin/', include(admin.site.urls)),
 url(r'^user/(\w+)/post/$', PostTweet.as_view()),
 url(r'^hashTag/(\w+)/$', HashTagCloud.as_view()),
 url(r'^search/$', Search.as_view()),
 url(r'^search/hashTag$', SearchHashTag.as_view()),
 url(r'^hashtag.json$', HashTagJson.as_view()),
 url(r'^login/$', 'django.contrib.auth.views.login'),
 url(r'^logout/$', 'django.contrib.auth.views.logout')
)

Both the login and logout views have default template names,
registration/login.html and registration/logged_out.html
respectively. Because these views are specific to the user and not our reusable
application, we'll create a new template/registration directory inside the mytweets
project using the following command:

 $ mkdir -p mytweets/templates/registration

Then, create a simple login and logout page. Use the following code snippet in the
login.html file:

 {% extends "base.html" %}
 {% block content %}
 {% if form.errors %}
 <p>Your username and password didn't match. Please try

 <p>Your username and password didn't match. Please try

again.</p>
 {% endif %}
 <form method="post" action="{% url
'django.contrib.auth.views.login' %}">
 {% csrf_token %}
 <table>
 <tr>
 <td>{{ form.username.label_tag }}</td>
 <td>{{ form.username }}</td>
 </tr>
 <tr>
 <td>{{ form.password.label_tag }}</td>
 <td>{{ form.password }}</td>
 </tr>
 </table>
 <input type="submit" value="login"/>
 <input type="hidden" name="next" value="{{ next }}"/>
 </form>
 {% endblock %}

Use the following code snippet in the logout.html file:

 {% extends "base.html" %}
 {% block content %}
 You have been Logged out!
 {% endblock %}

We have just enabled Django's default authentication system. As this does basic
authorization, it has its predefined URLs for certain redirections. For example, we
already know that /login will take a user to the /registration/login.html
page. Similarly, once the user is authenticated, they are redirected to the URL
accounts/profile. In our project, we have a custom URL for each user. We will
update these entries in the settings.py file

LOGIN_REDIRECT_URL = '/profile'
LOGIN_URL = 'django.contrib.auth.views.login'

To keep things simple, we will just create a view, which will take an authenticated
user to the profile, which will then redirect the user to their profile page. Basically,
we will construct the parameter of the username after valid authentication; in other
words, /profile | /profile/<username> will be generated in a separate class
view. For this, we also need to create a URL entry as follows:

 url(r'^profile/$', UserRedirect.as_view()),

And Profile redirect class with a get() method as:

class UserRedirect(View):
 def get(self, request):
 return HttpResponseRedirect('/user/'+request.user.username)

This is it. Now every logged-in user will be redirected to his profile page.

Now, coming back to the original problem, when a user visits another user's profile,
they will have the option to follow this user's profile; this means the follower will
get updates about all the posted tweets on their home page.

Once following a user, the follower will have the option to unfollow the user, and if
the user visits their own profile, they should see nothing at all.

The updated code for the user profile is as follows:

 {% extends "base.html" %}
 {% block navbar %}
 <p class="navbar-text navbar-left">
 {{
profile.username }}'s Profile Page
 {% if profile.username != user.username %}
 <span class="btn btn-xs btn-default follow-btn"
title="Click to follow {{ profile.username }}">
 <input id="follow" type="hidden" name="follow" value="{{
profile.username }}">
 {% if
following %} Unfollow {% else %} Follow {% endif %}
 {% endif %}
 </p>
 <p class="navbar-text navbar-right">
 {{
user.username }}
 </p>
 {% endblock %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-6 col-md-offset-3 column">
 <form id="search-form" action="post/" method="POST">{%
csrf_token %}
 <div class="input-group">
 {{ form.text.errors }}
 {{ form.text }}

 {{ form.country.as_hidden }}

 <button class="btn btn-default"
type="submit">Post</button>

 </div>
 <!-- /input-group -->
 </form>
 </div>
 <h1> </h1>
 <div class="col-md-12 column">
 {% for tweet in tweets %}
 <div class="well">
 {{ tweet.text }}
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

The following code checks whether the user is viewing their own profile; if so, they
will not be shown the follow button. It also checks whether the user logged in is
following the profile they've visited; if so, the unfollow button will be shown, and if
not, the follow button will be shown.

 {% if profile.username != user.username %}
 <span class="btn btn-xs btn-default follow-btn" title="Click
to follow {{ profile.username }}">
 <input id="follow" type="hidden" name="follow" value="{{
profile.username }}">
 {% if
following %} Unfollow {% else %} Follow {% endif %}
 {% endif %}

To render the updated view, class Profile() has also been updated as follows:

class Profile(LoginRequiredMixin, View):
 """User Profile page reachable from /user/<username> URL"""
 def get(self, request, username):
 params = dict()
 userProfile = User.objects.get(username=username))
 userFollower = UserFollower.objects.get(user=userProfile)
 if

 if

userFollower.followers.filter(username=request.user.username).e
xists():
 params["following"] = True
 else:
 params["following"] = False
 form = TweetForm(initial={'country': 'Global'})
 search_form = SearchForm()
 tweets =
Tweet.objects.filter(user=userProfile).order_by('-
created_date')
 params["tweets"] = tweets
 params["profile"] = userProfile
 params["form"] = form
 params["search"] = search_form
 return render(request, 'profile.html', params)

The following code checks whether the logged-in user is a follower of the user
whose profile they are visiting:

 if
userFollower.followers.filter(username=request.user.username).e
xists():

Adding or removing the follower

Let's create a post() method for the profile to add or remove followers based on
parameters:

 def post(self, request, username):
 follow = request.POST['follow']
 user = User.objects.get(username= request.user.username)))
 userProfile === User.objects.get(username=username)
 userFollower, status =
UserFollower.objects.get_or_create(user=userProfile)
 if follow=='true':
 #follow user
 userFollower.followers.add(user)
 else:
 #unfollow user
 userFollower.followers.remove(user)
 return HttpResponse(json.dumps(""),
content_type="application/json")

This is a simple function that checks the parameters to add or remove users to or
from the followers list.

The follow button part of the profile.html file should be updated with the class
names so that we can trigger the JavaScript event functionalism, as follows:

<p class="navbar-text navbar-left">
 {{
profile.username }}'s Profile Page
 {% if profile.username != user.username %}
 <span class="btn btn-xs btn-default follow-btn"
title="Click to follow {{ profile.username }}" value="{{
following }}" username="{{ profile.username }}">

 {{ following|yesno:"Unfollow,Follow" }}

 {% endif %}
</p>

Finally, let us create the profile.js file which has the post() method whenever
the follow/unfollow button is clicked:

Create a JavaScript file named as profile.js and add the following code:

$(".follow-btn").click(function () {
 var username = $(this).attr('username');
 var follow = $(this).attr('value') != "True";
 $.ajax({
 type: "POST",
 url: "/user/"+username+"/",
 data: { username: username , follow : follow },
 success: function () {
 window.location.reload();
 },
 error: function () {
 alert("ERROR !!");
 }
 })
});

Don't forget to add this JavaScript file in the profile.html file at the bottom of
the page, as shown in the following code:

 {% block js %}
 <script src="{% static 'js/profile.js' %}"></script>
 {% endblock %}

Displaying the most followed user

After we have implemented the feature for following users, we can move ahead
with a new page design where we will list the most followed user. The logic of this
page can be reused to design the page that has the highest number of comments.

The basic components for this page design are:

View : The users.html file
Controller : The most followed user
URL mapping

Add the following content in the view.html file:

 {% extends "base.html" %}
 {% load staticfiles %}
 {% block navbar %}
 <p class="navbar-text navbar-right">
 {{
user.username }}
 </p>
 {% endblock %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-12 column">
 {% for userFollower in userFollowers %}
 <div class="well">
 {{ userFollower.user.username
}}
 ({{ userFollower.count
}} followers)
 </div>
 {% endfor %}
 </div>
 </div>
 {% endblock %}

Add the following class in the controller:

class MostFollowedUsers(View):
 def get(self, request):
 userFollowers = UserFollower.objects.order_by('-count')
 params = dict()
 params['userFollowers'] = userFollowers

 return render(request, 'users.html', params)

This following line orders the followers in the order of who has the most followers:

 userFollowers = UserFollower.objects.order_by('-count')

We need to update the URL mapping as well, as follows:

 url(r'^mostFollowed/$', MostFollowedUsers.as_view()),

That's all! We are done with a page where all the users are listed by follower count.
If the count gets too high, you can also limit it using this basic Python list syntax:

 userFollowers = UserFollower.objects.order_by('-count')[:10]

This will list only the top 10 users.

Summary

In this chapter, we have learned to create login, logout, and registration page
templates. We also learned how to allow the following of another user and
displaying the most followed users.

The next chapter switches to new topics. Sooner or later, you will need an
administration interface for your application to manage your data models.
Fortunately, Django comes with a full-fledged administration interface ready to be
used. We will learn how to enable and customize this interface in the next chapter,
so keep reading!

Chapter 8. Creating an Administration
Interface

In this chapter, we will learn the features of the administrator interface using
Django's inbuilt features. We will also cover how to show tweets in a customized
way, with sidebar or pagination enabled. We will deal with the following topics in
this chapter:

Customizing the administration interface
Customizing listing pages
Overriding administration templates
Users, groups, and permissions

User permissions
Group permissions
Using permissions in views

Organizing content into pages (pagination)

Customizing the administration
interface

The administration interface provided by Django is very powerful and flexible, and
from the version 1.6, it comes activated by default. This will give you a fully featured
administration kit for your site. Although the administration application should be
sufficient for most needs, Django offers several ways to customize and enhance it.
In addition to specifying which models are available in the administration interface,
you can also specify how listing pages are presented and even override the
templates used to render the administration pages. So, let's learn about these
features.

Customizing listing pages

As we saw in the previous chapter, we registered our model classes to the
administration interface using the following methods:

admin.site.register (Tweet)
admin.site.register (Hashtag)
admin.site.register (UserFollower)

We can also customize several aspects of the administration pages. Let's learn
about this by example. The tweet listing page displays the string representation of
each tweet, as we can see in the following screenshot:

Wouldn't this page be more useful if it were to display the name of the user who has
posted the tweet, as well as the time of posting, in separate columns? It turns out
that implementing this functionality only requires adding a few lines of code.

Edit the tweet model in tweet/admin.py file as follows:

 from django.contrib import admin
 from models import Tweet, HashTag
 from user_profile.models import UserFollower
 # Register your models here.
 admin.site.register(Tweet)
 admin.site.register(HashTag)
 admin.site.register(UserFollower)

Add new lines of code above #Register your models here and the updated
code will look like this:

 from django.contrib import admin
 from models import Tweet, HashTag
 from user_profile.models import UserFollower

 class TweetAdmin(admin.ModelAdmin):

 list_display = ('user', 'text', 'created_date')

 # Register your models here.
 admin.site.register(Tweet,
 TweetAdmin
)))
 admin.site.register(HashTag)
 admin.site.register(UserFollower)

This code adds the extra column in the administrator view for the TweetAdmin()
class:

 class TweetAdmin(admin.ModelAdmin):
 list_display = ('user', 'text', 'created_date')

Moreover, we have passed an extra parameter to register calls for the administrator
tweet; that is, admin.site.register(Tweet) becomes
admin.site.register(Tweet, TweetAdmin) now. Refresh the same page and
note the changes, as shown in the following screenshot:

The table is now better organized! We simply defined a tuple attribute called
list_display in the TweetAdmin() class of the Tweet model. This tuple contains
the names of the fields to be used in the listing page.

There are other attributes that we can define in the Admin class; each one should be
defined as a tuple of one or more field names.

list_filter: If defined, this creates a sidebar with links that can be used to
filter objects according to one or more fields in the model.
ordering: The fields that are used to order objects in the listing page.
search_fields: If defined, it creates a search field that can be used to
search. The field name is preceded by a minus sign, and descending order is
used instead of ascending order for the available objects in the data model
according to one or more fields.

Let's utilize each of the preceding attributes in the tweet listing page. Again, edit
the Tweet model in the tweet/admin.py file and append the following highlighted
lines:

 from django.contrib import admin
 from models import Tweet, HashTag
 from user_profile.models import UserFollower

 class TweetAdmin(admin.ModelAdmin):
 list_display = ('user', 'text', 'created_date')

 list_filter = ('user',)

 ordering = ('-created_date',)

 search_fields = ('text',)

 # Register your models here.
 admin.site.register(Tweet, TweetAdmin)
 admin.site.register(HashTag)
 admin.site.register(UserFollower)

This is how it looks after using these attributes:

As you can see, we were able to customize and enhance the tweet listing page with
only a few lines of code. Next, we will learn about customizing the templates used
to render administration pages, which will give us even greater control over the
administration interface.

Overriding administration templates

There are times when you want to change the look and feel of the administration
interface or to move the elements on the various administration pages and
rearrange them. Fortunately, the administration interface is flexible enough to do
all of this and more by allowing us to override its templates. The process of
customizing an administration template is simple. First, you copy the template from
the administration application folder to your project's templates folder, and then
you edit this template and customize it to your liking. The location of the
administration templates depends on where Django is installed. Here is a list of the
default installation paths of Django under the major operating systems:

Windows : C:\PythonXX\Lib\site-packages\django
UNIX and Linux : /usr/lib/pythonX.X/site-packages/django
Mac OS X : /Library/Python/X.X/site-packages/django

(Here, X.X is the version of Python on your system. The site-packages folder can
also be found as dist-packages.)

If you cannot find Django in the default installation path for your operating system,
perform a file system search for django-admin.py. You will get multiple hits, but
the one that you want will be under the Django installation path, inside a folder
called bin.

After locating the Django installation path, open
django/contrib/admin/templates/ and you will find the templates used by
the administration application.

There are many files in this directory, but the most important ones are these:

admin/base_site.html: This is the base template for the administration.
This template generates the interface. All pages inherit from this template in
the following model.
admin/change_list.html: This template generates a list of available
objects.
admin/change_form.html: This template generates a form for adding or
editing an object.
admin/delete_confirmation.html: This template generates the
confirmation page when an object is deleted.

Let's try to customize one of these templates. Suppose that we want to change the
string Django administration located at the top of all admin pages. To do so, create
a folder called admin inside the templates folder of our project, and copy the
admin/base_site.html file to it. After that, edit the file to change all instances

admin/base_site.html file to it. After that, edit the file to change all instances

of Django to Django Tweet:

 {% extends "admin/base.html" %}
 {% load i18n %}
 {% block title %}{{ title|escape }} |
 {% trans 'Django Tweet site admin' %}{% endblock %}
 {% block branding %}
 <h1 id="site-name">{% trans 'Django Tweet administration'
%}</h1>
 {% endblock %}
 {% block nav-global %}{% endblock %}

The result will look like this:

Because of the modular design of the admin templates, it is usually neither
necessary nor advisable to replace an entire template. It is almost always better to
override only the section of the template that you need to change.

The process was pretty simple, wasn't it? Feel free to experiment with other
templates. For example, you may want to add a help message to a listing or edit
pages.

The administration templates make use of many advanced features of the Django
template system, so if you see a template tag that you are not familiar with, you can
refer to the Django documentation.

Users, groups, and permissions

So far, we have been logged in to the administration interface using the superuser
account that we created with the manage.py syncdb command. In reality,
however, you may have other trusted users who need access to the administration
page. In this section, we will see how to allow other users to use the administration
interface, and we will learn more about the Django permissions system in the
process.

However, before we continue, I want to emphasize this: only trusted users should be
given access to the administration pages. The administration interface is a very
powerful tool, so only those whom you know well should be granted access to it.

User permissions

If you don't have users in the database other than the superuser, create a new user
account using the registration form that we built in Chapter 7, Following and
Commenting . Alternatively, you could use the administration interface itself by
clicking on Users and then Add User .

Next, return to the users list and click on the name of the newly created user. You
will get a form that can be used to edit various aspects of the user account, such as
name and e-mail information. Under the Permissions section of the edit form, you
will find a checkbox labelled Staff status . Enabling this checkbox will let the new
user enter the administration interface. However, they won't be able to do much
after they log in because this checkbox only grants access to the administration
area; it does not give the ability to see or change data.

To give the new user enough permissions to change data models, you can enable
the Superuser status checkbox, which will grant the new user full permission to
perform any function that they want. This option makes the account as powerful as
the superuser account created by the manage.py syncdb command.

On the whole, however, it's not desirable to grant a user full access to everything.
Therefore, Django gives you the ability to have fine control over what users can do
through the permissions system. Below the Superuser status checkbox, you will
find a list of permissions that you can grant to the user. If you examine this list, you
will find that each data model has three types of permissions:

Adding an object to the data model
Changing an object in the data model
Deleting an object from the data model

These permissions are automatically generated by Django for data models that
contain an Admin class. Use the arrow button to grant some permissions to the

part0056.xhtml#aid-1LCVG2

contain an Admin class. Use the arrow button to grant some permissions to the

account that we are editing. For example, give the account the ability to add, edit,
and delete tweets and hashtags. Next, log out and then log in to the administration
interface again using the new account. You will notice that you will only be able to
manage the tweets and hashtags data models.

The permissions section of the user edit page also contains a checkbox called Active
. This checkbox can be used as a global switch to enable and disable the account.
When unchecked, the user won't be able to log in to the main site or the
administration area.

Group permissions

If you have a considerable number of users who share the same permissions, it
would be a tedious and error-prone task to edit each user's account and assign the
same permissions to them. Therefore, Django provides another user management
facility: groups. To put it simply, groups are a way of categorizing users who share
the same permissions. You can create a group and assign permissions to it. When
you add a user to the group, this user is granted all of the group's permissions.

Creating a group is not very different from other data models. Click on Groups on
the main page of the administration interface, and then click on Add Group . Next,
enter a group name and assign some permissions to the group; finally, click on Save
.

To add a user to a group, edit the user account, scroll to the Groups section in the
edit form, and select whichever group you want to add the user to.

Using permissions in views

Although we have only used permissions in the administration interface so far,
Django also lets us utilize the permission system while writing views. It is possible to
use permissions while programming a view to grant a group of users access to a
particular feature or page, such as private content. We will learn about the methods
that can be used to do so in this section. We won't actually make changes to the
code of our application, but feel free to do so if you want to experiment with the
methods explained.

If you wanted to check whether a user has a particular permission, you could use the
has_perm() method on the User object. This method takes a string that
represents the permission in the following format:

app.operation_model

The app parameter specifies the name of the application where the model is
located; the operation parameter could be add, change or delete; the model
parameter specifies the name of the model.

For example, to check whether the user can add tweets, use this:

 user.has_perm('tweets.add_tweet')

To check if the user can change tweets, use this:

 user.has_perm('tweets.change_tweet')

Furthermore, Django provides a function named decorator that can be used to
restrict a view to users who have a particular permission. The decorator is called
permission_required, and it is located in the
django.contrib.auth.decorators package.

Using this decorator is similar to how we used the login_required function. The
decorator function is to restrict pages to logged in users. Let's say we want to
restrict the tweet_save_page view (in the tweets/views.py file) to users who
have the tweet.add_tweet permission. To do so, we can use the following code:

from django.contrib.auth.decorators import permission_required
@permission_required('tweets.add_tweet', login_url="/login/")
def tweet_save_page(request):
 # [...]

This decorator takes two parameters: the permission to check for and where to
redirect the user if they don't have the required permission.

The question of whether to use the has_perm method or the
permission_required decorator depends on the level of control that you want.
If you need to control access to a view as a whole, use the permission_required
decorator. However, if you need finer control over permissions inside a view, use the
has_perm method. These two approaches should be sufficient for any permission-
related needs.

Organizing content into pages –
pagination

In previous chapters, we have covered things such as listing down the tweets of
users and listing down most followed users, but consider a use case when these
small numbers scale up and we start getting a large number of results for each type
of query. To cover such a situation, we should manipulate our code so as to make it
support pagination.

The page would increase in size, and finding an item within the page would become
difficult. Fortunately, there is a simple and intuitive solution to this: pagination.
Pagination is the process of breaking content into pages. And, as always, Django
already has a component that implements this functionality, ready for us to use!

If we have a large set of tweets, we split the set into pages with ten (or so) items on
each page, present the first page to the user, and provide links to browse other
pages.

The Django pagination functionality is encapsulated in a class called Paginator,
which is located in the django.core.paginator package. Let's learn the interface
of this class using the interactive console:

 from tweet.models import *
 from django.core.paginator import Paginator
 query_set = Tweet.objects.all()
 paginator = Paginator(query_set, 10)

Note

Open the Django shell with the python manage.py shell command.

Here we import some classes, build a query set containing all bookmarks, and
instantiate an object called Paginator. The constructor of this class takes the
query set to be paginated, and the number of items on each page is set.

Let's see how to retrieve information from the Paginator object (of course, the
results will vary depending on the amount of bookmarks that you have):

 >>> paginator.num_pages # Number of pages

 1

 >>> paginator.count # Total number of items

 5

 # Items in first page (index is zero-based)

 >>> paginator.object_list

 [<Tweet: #django is awesome.>, <Tweet: I love Django
too.>, <Tweet: Django makes my day.>, <Tweet: #Django is fun.>,
<Tweet: #Django is fun.>]

 # Does the first page have a previous page?

 >>> page1 = paginator.page(1)

 # Stores the first page object to page1

 >>> page1.has_previous()

 False

 # Does the first page have a next page?

 >>> page1.has_next()

 True

As you can see, Paginator does the heavy lifting for us. It takes a query set, breaks
it into pages, and enables us to render the query set into multiple pages.

Let's implement pagination into one of our views, the tweet page for example.
Open tweet/views.py and modify the user_page view as follows:

We have our user profile page listing with the following class:

 class Profile(LoginRequiredMixin, View):
 """User Profile page reachable from /user/<username> URL"""
 def get(self, request, username):
 params = dict()
 userProfile = User.objects.get(username=username)
 userFollower = UserFollower.objects.get(user=userProfile)
 if
userFollower.followers.filter(username=request.user.username).e
xists():
 params["following"] = True
 else:
 params["following"] = False
 form = TweetForm(initial={'country': 'Global'})
 search_form = SearchForm()
 tweets =
Tweet.objects.filter(user=userProfile).order_by('-
created_date')
 params["tweets"] = tweets
 params["profile"] = userProfile
 params["form"] = form
 params["search"] = search_form
 return render(request, 'profile.html', params)

We need to modify the preceding code to use pagination:

 class Profile(LoginRequiredMixin, View):
 """User Profile page reachable from /user/<username> URL"""
 def get(self, request, username):
 params = dict()
 userProfile = User.objects.get(username=username)
 userFollower = UserFollower.objects.get(user=userProfile)
 if
userFollower.followers.filter(username=request.user.username).e
xists():
 params["following"] = True

 else:
 params["following"] = False
 form = TweetForm(initial={'country': 'Global'})
 search_form = SearchForm()
 tweets =
Tweet.objects.filter(user=userProfile).order_by('-
created_date')
 paginator = Paginator(tweets, TWEET_PER_PAGE)
 page = request.GET.get('page')
 try:
 tweets = paginator.page(page)
 except PageNotAnInteger:
 # If page is not an integer, deliver first page.
 tweets = paginator.page(1)
 except EmptyPage:
 # If page is out of range (e.g. 9999), deliver last
page of results.
 tweets = paginator.page(paginator.num_pages)
 params["tweets"] = tweets
 params["profile"] = userProfile
 params["form"] = form
 params["search"] = search_form
 return render(request, 'profile.html', params)

The following code snippet mainly works the pagination magic in the preceding
code:

 tweets =
Tweet.objects.filter(user=userProfile).order_by('-
created_date')
 paginator = Paginator(tweets, TWEET_PER_PAGE)
 page = request.GET.get('page')
 try:
 tweets = paginator.page(page)
 except PageNotAnInteger:
 # If page is not an integer, deliver first page.
 tweets = paginator.page(1)
 except EmptyPage:
 # If page is out of range (e.g. 9999), deliver last
page of results.
 tweets = paginator.page(paginator.num_pages)

To make this code work, add the TWEET_PER_PAGE = 5 parameter in the

To make this code work, add the TWEET_PER_PAGE = 5 parameter in the

settings.py file, and, in the preceding code, just add the import settings.py
statement at the top of the code.

We read a get variable called page from the request, which tells Django which page
has been requested. We also set the TWEET_PER_PAGE parameter in the
settings.py file to show the number of tweets on a single page. For this specific
case, we choose it to be 5.

The paginator = Paginator(tweets, TWEET_PER_PA GE) method creates a
pagination object that holds all the information about the query.

Now, just with a URL user/<username>/?page=<page_numer>, the page will
look as shown in the following screenshot. The first image shows the user's tweet
with the page number in the URL.

The following screenshot shows the tweet list of a user on their homepage:

Summary

Although this chapter is relatively short, we learned how to implement a lot of
things. This emphasizes the fact that Django lets you do a lot with only a few lines of
code. You learned how to utilize Django's powerful administration interface, how to
customize it, and how to take advantage of the comprehensive permission system
offered by Django.

In the next chapter, you will learn about several exciting features found in almost
every Web 2.0 application nowadays.

Chapter 9. Extending and Deploying

In this chapter, we will prepare our application for deployment in production by
utilizing various Django framework features. We will add support for multiple
languages, improve performance by caching and automated testing, and configure
the project for a production environment. There is a lot of interesting and useful
information in this chapter, so make sure you go through it before publishing your
application online!

In this chapter, you will learn about the following topics:

Sending invitation e-mails to friends
Internationalization (i18n)—offering the site in multiple languages
Caching—improving the performance of your site during high traffic
Unit testing—automating the process of testing your application

Sending invitation e-mails to friends

Enabling our users to invite their friends carries many benefits. People are more
likely to join our site if their friends already use it. After they join, they will also
invite their friends, and so on, which means more and more users for our application.
Therefore, it is a good idea to include an "invite a friend" feature in our app.

Building this feature requires the following components:

An invitation data model to store invitations in the database
A form in which users can type the e-mail IDs of their friends and send
invitations
An invitation e-mail with an activation link
A mechanism to process activation links sent in e-mails

Throughout this section, we will implement each of these components. However,
because this section involves sending e-mails, we first need to configure Django to
send e-mails by adding some options to the settings.py file. So, open the
settings.py file and add the following lines:

 SITE_HOST = '127.0.0.1:8000'
 DEFAULT_FROM_EMAIL = 'MyTwitter <noreply@mytwitter.com>'
 EMAIL_HOST = 'mail.yourisp.com'
 EMAIL_PORT = ''
 EMAIL_HOST_USER = 'username+mail.yourisp.com'
 EMAIL_HOST_PASSWORD = ''

Let's see what each variable in the preceding code does:

SITE_HOST: This is the hostname of your server. Leave it as
127.0.0.1:8000 for now. When we deploy our server in the next chapter,
we will change this.
DEFAULT_FROM_EMAIL: This is the e-mail address that appears in the From
field of the outgoing e-mail server. For the host username, input your
username plus your e-mail server, as shown in the preceding code snippet.
Leave the fields empty if your ISP does not require them.
EMAIL_HOST: This is the hostname of your e-mail server.
EMAIL_PORT: This is the port number of the outgoing e-mail server. If you
leave it empty, the default value (25) will be used. You also need to obtain this
from your ISP.
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD: This is the username and
password for e-mails sent by Django.

If your development machine doesn't run a mail server, most likely this is the case,
then you need to enter your ISP's outgoing e-mail server. Contact your ISP for more
information.

To verify that your settings are correct, launch the interactive shell and enter the
following:

 >>> from django.core.mail import EmailMessage

 >>> email = EmailMessage('Hello', 'World',
to=['your_email@example.com'])

 >>> email.send()

Replace the your_email@example.com parameter with your actual e-mail
address. If the preceding call to send mail does not raise an exception and you
receive the e-mail, then all is set. Otherwise, you need to verify your settings with
your ISP and try again.

But wait, what if you don't get any information from the ISP? We then try the
alternate way: using Gmail to send a mail (of course, not as
noreply@mytweet.com, but from your real e-mail ID). Let's look at the changes
you will have to make in the settings.py file of MyTweeets project for the same.

Remove the previous settings.py file entries entirely and add the following:

 EMAIL_USE_TLS = True
 EMAIL_HOST = 'smtp.gmail.com'
 EMAIL_HOST_USER = 'your-gmail-email-id'
 EMAIL_HOST_PASSWORD = 'your-gmail-application-password'
 EMAIL_PORT = 587
 SITE_HOST = '127.0.0.1:8000'

If you are getting an error such as:

 (534, '5.7.9 Application-specific password required.
Learn more at\n5.7.9
http://support.google.com/accounts/bin/answer.py?answer=185833
zr2sm8629305pbb.83 - gsmtp')

This means that the EMAIL_HOST_PASSWORD parameter needs a application
authorization password that is not your e-mail password. Follow the link mentioned
in the host section to get more details on how to create one.

After setting the things up, try sending the mail again from the shell using the
following commands:

 >>> from django.core.mail import EmailMessage

 >>> email = EmailMessage('Hello', 'World',
to=['your_email@example.com'])

 >>> email.send()

Here, the your_email@example.com parameter is any e-mail address that you
want to send a mail to. The from address of the mail will be the Gmail e-mail address
that we passed to the following variable:

 EMAIL_HOST_USER = 'your-gmail-email-id'

Now, once the settings are correct, sending an e-mail in Django is a piece of cake!
We will use the EmailMessage function to send the invitation e-mail, but first, let's
create a data model to store invitations.

The invitation data model

An invitation consists of the following information:

The recipient name
The recipient e-mail
The user object of the sender

We also need to store an activation code for the invitation. This code will be sent in
the invitation e-mail. The code will serve two purposes:

Before accepting the invitation, we can use the code to verify that the
invitation actually exists in the database
After accepting the invitation, we can use the code to retrieve the invitation
information from the database and to follow relationships between the
sender and recipient

With the preceding information in mind, let's create the invitation data model. Open
the user_profile/models.py file and append the following code to it:

 class Invitation(models.Model):
 name = models.CharField(maxlength=50)
 email = models.EmailField()
 code = models.CharField(maxlength=20)
 sender = models.ForeignKey(User)
 def __unicode__(self):
 return u'%s, %s' % (self.sender.username, self.email)

There shouldn't be anything new or difficult to understand in this model. We have
simply defined fields for the recipient name, recipient e-mail, activation code, and
the sender of the invitation. We also created a __unicode__ method for
debugging and enabled the model in the administration interface. Do not forget to
run the python manage.py syncdb command to create the new model's table in
the database.

We will also create the invitation form for this. Create a file called forms.py in the
user_profile directory and update it with the following code:

from django import forms

class InvitationForm(forms.Form):
 email = forms.CharField(widget=forms.TextInput(attrs={'size':

 email = forms.CharField(widget=forms.TextInput(attrs={'size':

32, 'placeholder': 'Email Address of Friend to invite.',
'class':'form-control search-query'}))

Creating the view page from where the invitations will be sent is similar to creating
the other pages that we created for search and tweets forms that we made by
creating a new file called template/invite.html:

 {% extends "base.html" %}
 {% load staticfiles %}
 {% block content %}
 <div class="row clearfix">
 <div class="col-md-6 col-md-offset-3 column">
 {% if success == "1" %}
 <div class="alert alert-success"
role="alert">Invitation Email was successfully sent to {{ email
}}</div>
 {% endif %}
 {% if success == "0" %}
 <div class="alert alert-danger" role="alert">Failed to
send Invitation Email to {{ email }}</div>
 {% endif %}
 <form id="search-form" action="" method="post">{%
csrf_token %}
 <div class="input-group input-group-sm">
 {{ invite.email.errors }}
 {{ invite.email }}

 <button class="btn btn-search"
type="submit">Invite</button>

 </div>
 </form>
 </div>
 </div>
 {% endblock %}

The URL entry for this is as follows:

 url(r'^invite/$', Invite.as_view()),

Now, we need to create get and post methods to send an invitation mail with this
form.

As sending an e-mail is more specific to a user than a tweet, we will create this

As sending an e-mail is more specific to a user than a tweet, we will create this

method in user_profile views, contrary to the tweet view that we used before.

Update the user_profile/views.py file with the following code:

from django.views.generic import View
from django.conf import settings
from django.shortcuts import render
from django.template import Context
from django.template.loader import render_to_string
from user_profile.forms import InvitationForm
from django.core.mail import EmailMultiAlternatives
from user_profile.models import Invitation, User
from django.http import HttpResponseRedirect
import hashlib

class Invite(View):
 def get(self, request):
 params = dict()
 success = request.GET.get('success')
 email = request.GET.get('email')
 invite = InvitationForm()
 params["invite"] = invite
 params["success"] = success
 params["email"] = email
 return render(request, 'invite.html', params)

 def post(self, request):
 form = InvitationForm(self.request.POST)
 if form.is_valid():
 email = form.cleaned_data['email']
 subject = 'Invitation to join MyTweet App'
 sender_name = request.user.username
 sender_email = request.user.email
 invite_code = Invite.generate_invite_code(email)
 link = 'http://%s/invite/accept/%s/' %
(settings.SITE_HOST, invite_code)
 context = Context({"sender_name": sender_name,
"sender_email": sender_email, "email": email, "link": link})
 invite_email_template =
render_to_string('partials/_invite_email_template.html',
context)
 msg = EmailMultiAlternatives(subject,

 msg = EmailMultiAlternatives(subject,

invite_email_template, settings.EMAIL_HOST_USER, [email],
cc=[settings.EMAIL_HOST_USER])
 user = User.objects.get(username=request.user.username)
 invitation = Invitation()
 invitation.email = email
 invitation.code = invite_code
 invitation.sender = user
 invitation.save()
 success = msg.send()
 return
HttpResponseRedirect('/invite?success='+str(success)+'&email='+
email)

 @staticmethod
 def generate_invite_code(email):
 secret = settings.SECRET_KEY
 if isinstance(email, unicode):
 email = email.encode('utf-8')
 activation_key = hashlib.sha1(secret+email).hexdigest()
 return activation_key

Here, the get() method is as simple as rendering the invite.html file with the
invite form as a parameter and a flag called the success and email variable is
initially unset.

The post() method uses the usual form check and variable extraction concept; the
code you will see for the first time is as follows:

 invite_code = Invite.generate_invite_code(email)

This is actually a static function call that generated the activation token with a
unique key for every invited user. The render_to_string() method works when
you load a template called _invite_email_template.html and pass the
following variables to it:

sender_name: This is the name of the person who has invited or is the sender
of the e-mail
sender_email: This is the e-mail address of the sender
email: This is the e-mail address of the person who has been invited
link: This is the invitation acceptance link

The template is then used to render the body of the invitation e-mail. After that, we
use the EmailMultiAlternatives() method to send the e-mail, as we did during
the interactive session in the previous section.

There are several observations to be made here:

The format of the activation link is
http://SITE_HOST/invite/accept/CODE/. We will write a view to
handle such URLs later in this section.
This is the first time we used a template to render something other than a
web page. As you can see, the template system is quite flexible and allows us
to build e-mails, as well as web pages, or any other text for that matter.
We used the render_to_string() and render() methods to build the
message body as opposed to the usual render_to_response call. If you
remember, this is how we rendered templates earlier in this book. We are
doing this here because we are not rendering a web page.

Since the send method loads a template called _invite_email_template.html,
create a file with this name in the templates folder and insert the following content:

 Hi,
 {{ sender_name }}({{ sender_email }}) has invited you to
join Mytweet.
 Please click {{ link }} to join.
This email was sent to {{ email }}. If you think this is a
mistake Please ignore.

We are halfway through the implementation of the "invite a friend" feature. At the
moment, clicking on the activation link produces a 404 page not found error, so,
next, we will write a view to handle it.

Handling activation links

We have made good progress; users are now able to send invitations to their friends
via e-mail. The next step is to build a mechanism that handles activation links in
invitations. Here is an outline of what we are going to do.

We will build a view that handles activation links. This view verifies that the
invitation code actually exists in the database, and that the user who registers
automatically follows the user who sent the link and gets redirected to the
registration page.

Let's start by writing a URL entry for the view. Open the urls.py file and add the
highlighted line to it:

 url(r'^invite/accept/(\w+)/$',
InviteAccept.as_view()),

Create a class in the user_profile/view.py file with thename of the class as
InviteAccept().

Logically, InviteAccept will work as the users will be asked to register for the
application, and if they have already registered, they will be asked to follow the user
who invited them.

For the sake of simplicity, we will redirect the user to the registration page with the
activation code so that when they register, they automatically become followers.
Let's take a look at the following code:

class InviteAccept(View):
 def get(self, request, code):
 return HttpResponseRedirect('/register?code='+code)

Then, we will write the registration page with the following code:

class Register(View):
 def get(self, request):
 params = dict()
 registration_form = RegisterForm()
 code = request.GET.get('code')
 params['code'] = code
 params['register'] = registration_form
 return render(request, 'registration/register.html',
params)

 def post(self, request):
 form = RegisterForm(request.POST)
 if form.is_valid():
 username = form.cleaned_data['username']
 email = form.cleaned_data['email']
 password = form.cleaned_data['password']
 try:
 user = User.objects.get(username=username)
 except:
 user = User()
 user.username = username
 user.email = email
 commit = True
 user = super(user, self).save(commit=False)
 user.set_password(password)

 if commit:
 user.save()
 return HttpResponseRedirect('/login')

As you can see, the view follows the URL format sent in invitation e-mails. The
activation code is captured from the URL using a regular expression and is, then,
passed to the view as a parameter.

This was a bit time-consuming, but we were able to put our Django knowledge to
good use while implementing it. You can now click on the invitation link that you
received via e-mail to see what happens. You will be redirected to the registration
page; you can create a new account there, log in, and note how the new account,
and your original one, became followers of the sender.

Internationalization (i18n) – offering
the site in multiple languages

People won't use our application if they cannot read its pages. So far, we have been
concerned with English-speaking users only. However, there are people all over the
world who do not know English or prefer to use their native language. To appeal to
those people, it would be a good idea to offer the interface of our application in
multiple languages. This would overcome the language barrier and open new
frontiers for our application, especially in regions where English is not common.

As you may have guessed, Django provides all the components needed to translate
a project into multiple languages. The system that is responsible for providing this
feature is called the internationalization system (i18n). The process of translating
a Django project is quite simple.

You follow these three steps:

1. Specify which strings should be translated in your application—for example,
status and error messages are translatable, whereas usernames are not.

2. Create a translation file for each language you want to support.
3. Enable and configure the i18n system.

We will go through each step in detail in the following subsections. By the end of
this section of the chapter, our application will support multiple languages and you
will be able to translate any other Django project with ease.

Marking strings as translatable

The first step in translating an application is telling Django which strings should be
translated. Generally speaking, strings that are part of views and templates need to
be translated, while strings that are entered by the user do not need to be. Marking
a string as translatable is done with a function call. The name of the function and
how it is called depends on where the string is located: in a view, template, model,
or form.

This step is much easier than it initially looks. Let's learn about it with an example.
We will translate the "invite follower" functionality in our application. The process
of translating the rest of the application will be exactly the same. Open the
user_profile/views.py file and make the highlighted changes to the invite
view:

from django.utils.translation import ugettext as _
from django.views.generic import View
from django.conf import settings

from django.shortcuts import render
from django.template import Context
from django.template.loader import render_to_string
from user_profile.forms import InvitationForm
from django.core.mail import EmailMultiAlternatives
from user_profile.models import Invitation, User
from django.http import HttpResponseRedirect
import hashlib

class Invite(View):
 def get(self, request):
 params = dict()
 success = request.GET.get('success')
 email = request.GET.get('email')
 invite = InvitationForm()
 params["invite"] = invite
 params["success"] = success
 params["email"] = email
 return render(request, 'invite.html', params)

 def post(self, request):
 form = InvitationForm(self.request.POST)
 if form.is_valid():
 email = form.cleaned_data['email']
 subject = _('Invitation to join MyTweet App')
 sender_name = request.user.username
 sender_email = request.user.email
 invite_code = Invite.generate_invite_code(email)
 link = 'http://%s/invite/accept/%s/' %
(settings.SITE_HOST, invite_code)
 context = Context({"sender_name": sender_name,
"sender_email": sender_email, "email": email, "link": link})
 invite_email_template =
render_to_string('partials/_invite_email_template.html',
context)
 msg = EmailMultiAlternatives(subject,
invite_email_template, settings.EMAIL_HOST_USER, [email],
cc=[settings.EMAIL_HOST_USER])
 user = User.objects.get(username=request.user.username)
 invitation = Invitation()
 invitation.email = email
 invitation.code = invite_code

 invitation.sender = user
 invitation.save()
 success = msg.send()
 return
HttpResponseRedirect('/invite?success='+str(success)+'&email='+
email)

 @staticmethod
 def generate_invite_code(email):
 secret = settings.SECRET_KEY
 if isinstance(email, unicode):
 email = email.encode('utf-8')
 activation_key = hashlib.sha1(secret+email).hexdigest()
 return activation_key

Note that the subject string starts with a "_"; alternatively, you can also write it as:

from django.utils.translation import ugettext
 subject = ugettext('Invitation to join MyTweet App')

Either way, it works well.

As you can see, the changes are minimal:

We imported a function called ugettext from
django.utils.translation.
We used as a keyword to assign a shorter name to the function (the
underscore character). We did so because this function will be used to mark
strings as translatable in views, and since this is a very common task, it's a
good idea to give the function a shorter name.
We marked a string as translatable simply by passing it to the _ function.

That was pretty simple, wasn't it? However, there is one little observation that we
need to make here. The first message uses string formatting, and we applied the %
operator after calling the _() function. This is necessary to avoid translating the e-
mail address. It's also preferable to use named formats, which give you greater
control while doing the actual translation later. So, you may want to define the
following code:

message= \
_('An invitation was sent to %(email)s.') % {
'email': invitation.email}

Now that we know how to mark strings as translatable in views, let's move to
templates. Open the invite.html file in the templates folder and modify it as

templates. Open the invite.html file in the templates folder and modify it as

follows:

{% extends "base.html" %}
{% load staticfiles %}
{% load i18n %}
{% block content %}
<div class="row clearfix">
 <div class="col-md-6 col-md-offset-3 column">
 {% if success == "1" %}
 <div class="alert alert-success" role="alert">
 {% trans Invitation Email was successfully sent to %}{{
email }}
 </div>
 {% endif %}
 {% if success == "0" %}
 <div class="alert alert-danger" role="alert">Failed to send
Invitation Email to {{ email }}</div>
 {% endif %}
 <form id="search-form" action="" method="post">{%
csrf_token %}
 <div class="input-group input-group-sm">
 {{ invite.email.errors }}
 {{ invite.email }}

 <button class="btn btn-search"
type="submit">Invite</button>

 </div>
 </form>
 </div>
 </div>
 {% endblock %}

Here, we placed the {% load i18n %} parameter at the beginning of the
template to give it access to translation tags. The <load> tag is generally used to
enable additional template tags that are not available by default. You need to place
it at the top of every template that uses translation tags. i18n is shorthand for
internationalization, which is the name of the Django framework that provides
translation features.

Next, we used a template tag called trans to mark strings as translatable. This
template tag works exactly the same as the gettext function in views. It's worth
noting that the trans tag does not work if the string contains a template variable.

noting that the trans tag does not work if the string contains a template variable.

In this case, you would need to use the blocktrans tag like:

{% blocktrans %}

You can pass a variable block, that is, {{ variable }} also inside {%
endblocktrans %} block to make it more meaningful for the readers.

Now you know how to deal with translatable strings in templates too. So, let's move
to forms and models. Marking a string as translatable in a form or model is slightly
different from views. To learn how it is done, open the user_profile/forms.py
file and modify the invite form, as follows:

from django.utils.translation import gettext_lazy as _
class InvitationForm(forms.Form):
 email = forms.CharField(widget=forms.TextInput(attrs={'size':
32, 'placeholder': _('Email Address of Friend to invite.'),
'class':'form-control'}))

The only difference here is that we imported the gettext_lazy function instead
of gettext . gettext_lazy, which delays translating the string until its return
value is accessed. This is needed here because the attributes of the form are created
only once: when the application is started. If we use the normal gettext function,
the translated labels will be stored in the form attributes using the default language
(usually English) and will never be translated again. However, if we use the
gettext_lazy function, the function will return a special object that will translate
the string every time it is accessed and, hence, the translation will be done correctly.
This feature makes the gettext_lazy function ideal for form and model
attributes.

With this, we finish marking the strings of the "invite friend" view for translation. To
help you remember what's covered in this subsection, here is a quick summary of
the techniques used to mark the translatable strings:

In views, mark the translatable strings using the gettext function (usually
imported as _)
In templates, mark the translatable strings using the trans template tag for
strings that do not contain variables and the blocktrans tag for the strings
that do
In forms and models, mark the translatable strings using the gettext_lazy
function (usually imported as _)

Of course, there are special cases that may need to be handled separately. For
example, you may want to translate default parameter values in views using the
gettext_lazy function instead of the gettext function. As long as you

gettext_lazy function instead of the gettext function. As long as you

understand the difference between these two functions, you should be able to
decide when you need to do so.

Creating translation files

Now that we have finished marking strings for translation, the next step is to create
a translation file for each language that we want to support. This file contains all the
translatable strings along with their translations and is created using a utility
provided by Django.

Let's create a translation file. First, you need to locate a file named make-
messages.py in the bin directory inside your Django installation folder. The
easiest way to find it is by using the search functionality in your operating system.
Once you find it, copy it to your system path (/usr/bin/ in Linux and Mac OS X and.
c:\windows\ in Windows).

Also, make sure that it is executable by running the following command in Linux and
Mac OS X (this step is not needed for Windows users):

 $ sudo chmod +x /usr/bin/make-messages.py

The make-messages.py utility uses a software package called GNU gettext to
extract the translatable strings from the source code. So, you need to install this
package. For Linux, search for the package in your package manager and install it.
Windows users will find an installer for the package at
http://gnuwin32.sourceforge.net/packages/gettext.htm.

Finally, Mac OS X users will find a version of the package for their operating system
along with the installation instructions at http://gettext.darwinports.com/.

Once you have the GNU gettext package installed, open a terminal, go to your
project folder, create a folder called locale there, and then run the following
command:

 $ make-messages.py -l de

This command creates a translation file for the German language. The de variable is
the language code for German. If you want to target another language, put its
language code instead of de and continue to do so for the rest of the chapter. In

http://gnuwin32.sourceforge.net/packages/gettext.htm
http://gettext.darwinports.com/

language code instead of de and continue to do so for the rest of the chapter. In

addition to this, if you want to support more than one language, run the previous
command for each language and apply the instructions to the rest of this section to
all languages.

Once you run the preceding command, it will create a file called django.po at
locale/de/LC_MESSAGES/. This is the translation file for the German language.
Open it in a text editor to see what it looks like. The file starts with some metadata,
such as the creation date and a character set. After that, you will find an entry for
each translatable string. Each entry consists of the filename and line number of the
string, the string itself, and an empty string below it where the translation should
go. Here is a sample entry from the file:

#: user_profile/forms.py
msgid "Friend's Name"
msgstr ""

To translate the string, simply use your text editor to type the translation in the
empty string on the third line. You can also use a specialized translation editor, such
as Poedit (available for all major operating systems at http://www.poedit.net/), but
for our simple file, a regular text editor should suffice. Make sure that you set a valid
character in the metadata section of the file. I recommend that you use UTF-8 :

"Content-Type: text/plain; charset=UTF-8\n"

You may note that the translation file contains some strings from the admin
interface. This is because the admin/base_site.html admin template uses the
trans template tag to mark its strings as translatable. There is no need to translate
these strings; Django already comes with translation files for them.

Once you're done translating, you need to compile the translation file into a format
that Django can use. This is done using another utility provided by Django called the
compile-messages.py command. Locate and move this file to your system path
and make sure that it is executable by following the same procedure as we did with
the make-messages.py command.

Next, run the following command from within your project folder:

 $ compile-messages.py

If the utility complains about an error in the file (such as a missing quotation mark),
correct the error and try again. Once it is successful, the utility will create a compiled
translation file called django.mo in the same folder and everything will be set for

http://www.poedit.net/

translation file called django.mo in the same folder and everything will be set for

the next step in this section.

Enabling and configuring the i18n system

Django comes with the i18n system enabled by default. You can verify this by
searching for the following line in the settings.py file:

USE_I18N = True

There are two ways to configure the i18n system. You can either set the language
globally for all users or let users specify their preferred languages individually. We
will see how to do both in this subsection.

To set the active language globally, find the variable called LANGUAGE_CODE in the
settings.py file and assign your preferred language code to it. For example, if
you want to set German as the default language for our project, change the
language code as follows:

LANGUAGE_CODE = 'de'

Now, start the development server if it's not already running, and navigate to the
"invite friend" page. There, you will find that the strings have changed according to
what you entered in the German translation file. Now, change the value of the
LANGUAGE_CODE variable to 'en' and note how the page reverts back to English.

The second configuration method is to let users choose the language. To do so, we
should enable a class called LocaleMiddleware. To put it simply, a middleware is a
class that processes a request or response object. Many components of Django
make use of middleware classes to implement features. To see this, open the
settings.py file and search for the MIDDLEWARE_CLASSES variable. You will find
a list of strings there, and one of them will be
django.contrib.sessions.middleware.SessionMiddleware, which
attaches session data to the request object. We don't need to learn how
middleware classes are implemented before using them. To enable
LocaleMiddleware, simply add its classpath to the MIDDLEWARE_CLASSES list.
Make sure that you put LocaleMiddleware after SessionMiddleware because
the locale middleware utilizes the session API, as we will see next. Open the
settings.py file and modify the file as highlighted in the following code snippet:

 MIDDLEWARE_CLASSES = (

 'django.middleware.common.CommonMiddleware',

 'django.contrib.sessions.middleware.SessionMiddleware',

 'django.contrib.auth.middleware.AuthenticationMiddleware
',

 'django.middleware.doc.XViewMiddleware',

 'django.middleware.locale.LocaleMiddleware',

)

The locale middleware determines the active language for the user by following
these steps:

1. It looks for a key named django_language in the session data.
2. If the key does not exist, it looks for a cookie called django_language.
3. If the cookie does not exist, it looks at the language code in the Accept-

Language HTTP header. This header is sent by the browser to the web server
indicating which languages you would prefer to receive content in.

4. If all else fails, the LANGUAGE_CODE variable in the settings.py file is used.

In all the preceding steps, Django looks for a language code that matches one of the
available translation files. To effectively utilize the locale middleware, we need a
view that enables the user to choose a language and updates the session data
accordingly. Fortunately, Django already comes with such a view for us to use. The
view is called setlanguage , and it expects a language code in a GET variable called
language. It updates the session data using this variable and redirects the user to
the originating page. To enable this view, edit the urls.py file and add the
following highlighted lines to it:

urlpatterns = patterns('',
i18n
(r'^i18n/', include('django.conf.urls.i18n')),
)

Adding the preceding lines is similar to how we added URL entries for the admin
interface. If you recall from a previous chapter, the include() function can be used

interface. If you recall from a previous chapter, the include() function can be used

to include URL entries from another application under a specific path. Now, we can
let the user change the language to German by providing a link, such as
/i18n/setlang/language=de. We will modify the base template to add such
links to all pages. Open the templates/base.html file and add the following
highlighted lines to it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 [...]
 </head>
 <body>
 [...]
 <div id="footer">
 Django Mytweets

 Languages:
 en
 de
 [218]Chapter 11
 </div>
 </body>
</html>

Additionally, we will style the new footer by appending the following CSS code to
the site_media/style.css file:

#footer {
margin-top: 2em;
text-align: center;
}

Now, the i18n functionality of our application is ready. Point your browser to the
"invite friend" page and try the new language links at the bottom of the page. The
language should change according to which link is clicked.

Before we conclude this section, there are a few observations to be made here:

You can access the currently active language in views using the request
LANGUAGE_CODE attribute.
Django itself is translated in a number of languages. You can see this by
triggering a form error while a language other than English is active. Error
messages will appear in the selected language even though you didn't
translate them yourself.

In templates, when the RequestContext variable is used, the currently
active language is accessible using the LANGUAGE_CODE template variable.

This section was a bit long, but you learned a very important feature from it. By
offering our application in multiple languages, we make it accessible to a broader
audience, which gives it greater potential to attract more and more users. This
actually applies to any web application, and, now, we will be able to translate any
Django project in multiple languages with ease.

In the next section, we will shift to a different topic. When the user base of your
application grows, the load on your server will increase and you will start to look for
ways to improve the performance of your application. This is where caching comes
to rescue.

So, please read on to learn about this very useful technique!

Caching – improving the performance of
your site during high traffic

Pages of web applications are dynamically generated. Code is executed to process
user input and generate output every time a page is requested. There are a lot of
overheads involved in generating dynamic pages, especially when compared to
serving static HTML files. The code may connect to a database, perform expensive
calculations, process files, and so on. At the same time, being able to generate
pages with code is exactly what makes a website dynamic and interactive.

Wouldn't it be great if we could get the best of both worlds? This is what caching
does, and it's a feature that is implemented on most the sites with medium to high
traffic. When a page is requested, caching stores the generated HTML of the page
and reuses it later when the same page is requested again. This cuts a lot of
overheads by avoiding the generation of the same page over and over again. Of
course, cached pages are not stored forever. When a page is cached, an expiration
period is set for the cache. When the cached page expires, it is deleted and the page
is generated and cached again. The expiration period is usually between a few
seconds and a few minutes, depending on the traffic of the site. The expiration
period ensures that the cache is updated periodically and that users receive content
updates, while, at the same time, reducing the overhead of generating pages.

Although caching is particularly useful for medium to high traffic sites, sites with
low traffic can also benefit from it. If the site happens to receive a surge of high
traffic suddenly, perhaps because it was featured on a major news site, you can
enable caching to reduce the server load and help your website survive the surge of
high traffic. Later, when the traffic calms down, you can turn off caching. So, caching
is also useful for small websites. You never know when you may need it, so you'd
better have this information ready.

Enabling caching

We will start this section by enabling the caching system. To use caching, you first
need to choose a caching backend and specify your choice in a variable called
CACHE_BACKEND in the settings.py file. The contents of this variable depend on
the caching backend you choose. Some of the available options are:

Simple Caching : For this, the cache data is stored in process memory. This is
only useful to test the caching system during development and must not be
used in production. To enable it, add the following to the settings.py file:

CACHE_BACKEND = 'simple:///'

Database Caching : For this, the cache data is stored in a database table. To

Database Caching : For this, the cache data is stored in a database table. To

create the cache table, run the following command:

 $ python manage.py createcachetable cache_table

Then, add the following to the settings.py file:

CACHE_BACKEND = 'db://cache_table'

Here, the cache table was called cache_table. You can call it whatever you
want as long as it doesn't conflict with an existing table.
Filesystem Caching : Here, the cache data is stored in the local filesystem. To
use it, add the following to the settings.py file:

CACHE_BACKEND = 'file:///tmp/django_cache'

Here, the /tmp/django_cache variable is used to store cache files. You can
specify another path if you like.
Memcached : Memcached is an advanced, highly efficient, and fast caching
framework. Installing and configuring it is beyond the scope of this book, but
if you already have a Memcached server available, you can specify its IP and
port in the settings.py file, as follows:

CACHE_BACKEND = 'memcached://ip:port/'

If you are not sure which backend to choose for this section, go with simple caching.
In reality, however, if you are caught in a sudden surge of traffic and want to
improve server performance, go with Memcached or database caching, depending
on what's available to you on the server. On the other hand, if you have a website
with medium to high traffic, I highly recommend you to use Memcached, as it is
definitely the fastest caching solution available for Django. The information
presented in this section works the same regardless of which caching backend you
choose.

So, decide on a caching backend and insert the corresponding CACHE_BACKEND
variable in the settings.py file. Next, you should specify the expiration duration
of cached pages in seconds. Add the following to the settings.py file to cache
pages for five minutes:

CACHE_MIDDLEWARE_SECONDS = 60 * 5

Now, we are done with enabling the caching system. Continue reading to learn how
to utilize caching to improve the performance of your application.

Configuring caching

You can configure Django to cache your whole site or specific views. We will learn
how to do both in this subsection.

Caching the whole site

To cache your whole site, add the CacheMiddleware class to your
MIDDLEWARE_CLASSES class in the settings.py file:

 MIDDLEWARE_CLASSES = (

 'django.middleware.common.CommonMiddleware',

 'django.contrib.sessions.middleware.SessionMiddleware',

 'django.contrib.auth.middleware.AuthenticationMiddlewar
e',

 'django.middleware.cache.CacheMiddleware',

 'django.middleware.doc.XViewMiddleware',

 'django.middleware.locale.LocaleMiddleware',

)

Order matters here as it did when we added the locale middleware. The caching
middleware class should be added after the session and authentication middleware
classes and before the locale middleware class.

This is all that you need to cache your Django site. From now on, whenever a page is
requested, Django will store the generated HTML and reuse it later. It's important to

requested, Django will store the generated HTML and reuse it later. It's important to

realize that the caching system only caches pages that do not have GET and POST
variables. So, our users will still be able to post tweets and follow friends because
the views of these pages expect GET or POST variables. On the other hand, pages
such as tweets and hashtag listings will be cached.

Caching specific views

Sometimes, you will want to cache only specific pages of your website—perhaps a
high-traffic site linked to a page of yours, so that most of the traffic will be directed
to this particular page. In this case, it would make sense to cache this page only.
Another good candidate for caching is a page that is expensive to generate, so you
would only want it to be generated once every five minutes or so. The tag cloud
page in our application fits the latter case. Every time the page is requested, Django
iterates through all the tags in the database and counts the number of tweets for
each tag. This is an expensive operation because it requires a large number of
database queries. Therefore, caching this view is a good idea.

To cache the view based on the hashtag class, you simply apply a method called
cache_page and the caching parameter with it. Try this by editing the
mytweets/urls.py file as highlighted in the following code:

 from django.views.decorators.cache import cache_page

 ...

 ...

 url(r'^search/hashTag$', cache_page(60 * 15)
(SearchHashTag.as_view())),

 ...

 ...

Using the cache_page() method is straightforward. It lets you specify which views
to cache. The rules mentioned in site caching also apply to view caching. If the view

to cache. The rules mentioned in site caching also apply to view caching. If the view

receives GET or POST parameters, Django won't cache it.

With this information, we finish this section. Caching won't be necessary when you
first release your website to the public. However, when your website grows, or if
you suddenly receive a surge of high traffic, the caching system will certainly
become handy. So, keep it in mind while monitoring the performance of your
application.

Next, we are going to learn about the Django testing framework. Testing can
sometimes be a tedious task. Wouldn't it be great if you could run a single command
and it took care of testing your site? Django lets you do this, and we will learn about
it in the next section.

Template fragments can be cached in the following manner:

 % load cache %}

 {% cache 500 sidebar %}

 .. sidebar ..

 {% endcache %}

Unit testing – automating the process
of testing your application

During the course of this book, we sometimes modified a view that we wrote
previously. This actually happens quite often while developing software. One may
modify or even rewrite a function to change the implementation details, because
the requirements have changed, or simply to refactor the code and make it more
readable.

When you modify a function, you have to test it again to make sure that your
changes didn't introduce bugs. However, testing will become a boring task if you
have to repeat the same tests over and over every time you modify a function. You
may also forget to test all aspects of the function if they are not well documented.
Clearly, this is not an ideal situation; we definitely need a better mechanism to
handle testing.

Fortunately, a solution already exists for this. It is called unit testing. The idea is that
you write code to test your code. The testing code calls your functions and verifies
that they behave as expected and then prints a report of the results. You only have
to write the testing code once. Later, whenever you want to test, you can simply run
the testing code and examine the resulting report.

Python comes with a framework for unit testing. It is located in the unit test module.
Django extends this framework to add support for view testing. We will learn how
to use the Django unit testing framework in this section.

The test client

In order to interact with views, Django provides a class that emulates browser
functionality. You can use it to send requests to your application and receive the
responses. Let's learn about it using the interactive console. Launch the console
using this command:

 $ python manage.py shell

Import the Client() class, create a Client object, and retrieve the homepage of
the application using a GET request:

 >>>from django.test.client import Client

 client = Client()

 >>> response = client.get('/')

 >>> print response

 X-Frame-Options: SAMEORIGIN

 Content-Type: text/html; charset=utf-8

 <html>

 <head>

 <link href="/static/css/bootstrap.min.css"

 rel="stylesheet" media="screen">

 </head>

 <body>

 <nav class="navbar navbar-default"
role="navigation">

 MyTweets

 </nav>

 <div class="container">

 </div>

 <nav class="navbar navbar-default navbar-fixed-bottom"
role="navigation">

 <p class="navbar-text navbar-right">Footer </p>

 </nav>

 <script src="/static/js/jquery-2.1.1.min.js"></script>

 <script src="/static/js/bootstrap.min.js"></script>

 <script src="/static/js/base.js"></script>

 </body>

 </html>

 >>>

Try to send a POST request to the login view. The output will vary depending on
whether you provide correct credentials or not:

 >>> print client.post('/login/',{'username':

 >>> print client.post('/login/',{'username':

'your_username', 'password': 'your_password'})

Finally, if there is a view that is restricted only to the users that are logged in, you
can send a request to it like this:

 >>> print client.login('/friend/invite/',
'your_username', 'your_password')

As you can see from the interactive session, the Client() class provides three
methods:

get: This method sends a GET request to a view. It takes the URL of the view
as a parameter. You can pass an optional dictionary of GET variables to this
method.
post: This method sends sends a POST request to a view. It takes the URL of
the view and a dictionary of POST variables as parameters.
login: This method sends a GET request to a view that is restricted to logged
in users only. It takes the URL of the view, a username, and password as
parameters.

The Client() class is stateful, which means that it retains its state across requests.
Once you log in, later requests will be handled while you are logged in. The
response object returned by the Client() class's methods contains the following
attributes:

status_code: This is the HTTP status of the response
content: This is the body of the response page
template: This is the Template instance used to render the page; if multiple
templates were used, this attribute would be a list of Template objects
context : This is the Context object used to render the template

These fields are useful to check whether the test succeeded or failed, as we will see
next. Feel free to experiment more with the Client() class. It's important to
understand how it works before you continue to the next subsection, where we will
create the first unit test.

Testing the registration view

Now that you are comfortable with the Client() class, let's write our first test.
Unit tests should reside in a module named tests.py inside the application folder.

Unit tests should reside in a module named tests.py inside the application folder.

Each test should be a method in a class derived from the django.test.TestCase
module. The name of the method must start with the word test. With this in mind,
we will write a test method that tries to register a new user account. So, create a file
named tests.py inside the bookmarks folder and type the following content in it:

 from django.test import TestCase

 from django.test.client import Client

 class ViewTest(TestCase):

 def setUp(self):

 self.client = Client()

 def test_register_page(self):

 data = {

 'username': 'test_user',

 'email': 'test_user@example.com',

 'password1': 'pass123',

 'password2': 'pass123'

 }

 response = self.client.post('/register/', data)

 self.assertEqual(response.status_code, 302)

Let's go through the code line by line:

First, we imported the TestCase and Client classes.
Next, we defined a class called ViewTest(), which is derived from the
TestCase class. As I said earlier, all test classes must be derived from this
base class.
After that, we defined a method called setUp(). This method is called when
the testing process starts. Here, we created a Client object.
Finally, we defined a method called test_register_page. The name of the
method starts with the word test, indicating that it is a test method. The
method sends a POST request to the registration view and checks the status
code for equality with the number 302. This number is the HTTP status for a
redirect.

If you recall from a previous chapter, the registration view redirects the user if the
request succeeds.

We checked the response object using a method called assertEqual(). This
method is inherited from the TestCase class. It raises an exception if the two
passed arguments are not equal. If an exception is raised, the testing framework
knows that the test failed; otherwise, if no exception is raised, it assumes that the
test succeeded.

The TestCase class provides a set of methods to be used in testing. Here is a list of
the important ones:

assertEqual: This expects two values to be equal
assertNotEquals: This expects two values to be unequal
assertTrue: This expects a value to be True
assertFalse: This expects a value to be False

Now that you understand the test class, let's run the actual test by issuing the
command:

 $ python manage.py test

The output will be similar to the following:

 Creating test database...

 Creating table auth_message

 Creating table auth_group

 Creating table auth_user

 Creating table auth_permission

 [...]

 Loading 'initial_data' fixtures...

 No fixtures found.

 .

 --

 Ran 1 test in 0.170s

 OK

 Destroying test database...

So, what has happened here? The testing framework starts by creating a test
database with tables similar to those in the real database. Next, it runs the tests
found in the tests module. Finally, it prints a report of the results and destroys the
test database.

Here, our single test succeeded. To see what the output would be like if the test
fails, modify the test_register_page view in the tests.py file by removing a
required form field:

def test_register_page(self):
data = {
'username': 'test_user',
'email': 'test_user@example.com',
'password1': '1',
'password2': '1'
}
response = self.client.post('/register/', data)
self.assertEqual(response.status_code, 302)

Now, run the python manage.py test command again to see the results:

 ==
=====

 FAIL: test_register_page
(mytweets.user_profile.tests.ViewTest)

 --

 Traceback (most recent call last):

 File "mytweets/user_profile/tests.py", line 19, in test_

 register_page

 self.assertEqual(response.status_code, 302)

 AssertionError: 200 != 302

 --

 Ran 1 test in 0.170s

 FAILED (failures=1)

Our test is working! Django detected an error and gave us the exact details of what
happened. Don't forget to return the test to its original form once you're done.
Now, let's write another test, a slightly more advanced one, to understand the
testing framework better.

There are many other scenarios for which you can write unit tests:

Checking whether registration fails if the two password fields do not match
Testing the "add friend" and "invite friend" views
Testing the "edit bookmark" functionality
Testing that a search returns correct results

The preceding list shows just examples. Writing unit tests to cover as many use
cases as possible is important to maintain a healthy application and to minimize
bugs and regressions. The more unit tests you write, the more confident you can be
when your application passes all the tests. Django makes it extremely easy to unit
test your application, so make use of this fact.

At some point in the application's life, it will move from the development mode to
production. The next section explains how to prepare your Django project for a
production environment.

Deploying Django

So, you have done a lot of work on your web application, and now it is the time to go
live. To make sure that the transition from development to production goes
smoothly, there are a number of changes that must be made to the application
before it goes live. This section covers these changes to help make the launch of
your web application successful.

The production web server

We have been using the development web server that comes with Django
throughout this book. While this server is perfect for the development process, it's
definitely not intended to be a production web server, as it wasn't developed with
security or performance in mind. Therefore, it is certainly not suitable for
production.

There are several options to choose from when it comes to a web server, but
Apache is by far the most popular choice, and the Django development team
actually recommends it. The details of how to set up Django with Apache depends
on your hosting solution. Some hosting plans offer preconfigured Django hosting,
where you only have to copy your project files to the server, whereas other hosting
plans give you the freedom to configure everything yourself.

The details of setting up Apache can vary depending on a number of factors and are
beyond the scope of this book. If you end up having to configure Apache yourself,
consult the Django documentation at
http://www.djangoproject.com/documentation/apache_auth/ for detailed
instructions.

http://www.djangoproject.com/documentation/apache_auth/

Summary

This chapter covered a variety of interesting topics. We developed an important set
of features for our project in this chapter. A follower's networks are very important
to help users socialize and share interests together. We learned about several
Django frameworks that are useful while deploying Django. We also learned how to
move a Django project from a development to a production environment. Notably,
the frameworks that we learned about are all very easy to use, so you will be able to
effectively utilize them in your future projects. These features are common in web
2.0 applications, and, now, you will be able to incorporate them in any Django
website.

In the next chapter, we will learn about improving various aspects of our application,
mainly performance and localization. We will also learn how to deploy our project
on a production server. The next chapter comes with a lot of useful information, so
read on!

Chapter 10. Extending Django

It's been a long journey so far, and we've dealt with lots of code and basic concepts
related to Django's functionalities. In this chapter, we will discuss Django a little
more, but we will discuss, in brief, different parameters, such as custom tags, filters,
sub-frameworks, message system, and so on. The following are the topics that we
will deal with in this chapter:

Custom template tags and filters
Class-based generic views
Contributed sub-frameworks
A message system
The subscription system
User scores

Custom template tags and filters

The Django template system comes with many template tags and filters that make
writing templates an easy and flexible job. Sometimes, however, you may wish to
extend the template system with your own tags and filters. This usually happens
when you find yourself repeating the same tag structure many times, when you wish
to wrap the structure in a single tag, or even when there is a filter that you want to
add to the template system.

Guess what? Django already allows you to do this, and it is quite easy too! You
basically add a new package to your application called templatetags and put
modules that contain tags and filters in it. Let's learn about this by adding a filter
that capitalizes a string. Add a templatetags folder to the mytweets parent
folder and put an empty file called __init__.py in it, so that Python treats the
folder as a package. Now, create a module called mytweet_filters in it. We are
going to write our filter in this module. Here is an illustration of the directory
structure:

templatetags/
 |-- __init__.py
 -- mytweet_filters.py

Now, add the following code to the mytweet_filters.py file:

 from django import template
 register = template.Library()

 @register.filter
 def capitalize(value):

 return value.capitalize()

The register variable is an object that can be used to introduce new tags and
filters to the template system. Here, we used the register.filter decorator to
add the capitalize function as a filter.

To use the new filter from within a template, put the following line at the beginning
of your template file:

{% load mytweet_filters %}

Then, you can use the new filter just like any other filter offered by Django:

Hi {{ name|capitalize }}!

Adding custom template tags works in a similar way with filters. Basically, you
define methods to process the tag and then register the tag to make it available for
templates. The process is slightly more involved because tags can be more
complicated than filters. Further information about custom template tags is
available in the Django online documentation.

While writing a custom filter, you have to take care of Django's auto-escaping
behavior with the filter. There are three type of strings that can be passed to the
filter:

Raw string : This string is prepared either by the str command or is formed
with the unicode. They are automatically escaped if auto-escaping is enabled.
Safe strings : These strings are the strings that are marked safe from further
escaping. They don't need any further escaping. To mark the output as a safe
string, use the django.utils.safestring.mark_safe() module.
Strings marked as "needing escaping" : As the name suggests, they always
need to escape.

Class-based generic views

While working with Django, you will note that there are certain types of views that
are always needed regardless of the project that you are working on. For this
reason, Django comes with a set of views that can be used in any project. These
views are called generic views .

Django offers generic views for the following purposes:

To create simple views for tasks, such as redirecting to another URL or
rendering a template
Listing and forming detail views to display objects from a data model - these
views are similar to how the admin page displays lists and detail pages for
data models
To generate date-based archive pages; these can be particularly useful for
blogs
To create, edit, and delete objects in data models

Django's class-based view can be configured by defining subclasses, or by passing
arguments directly in the URL conf.

The subclasses are full of conventions that remove the hassle to rewrite templates
of common situations. When you use the subclass, you can actually override the
attribute or methods of the main class by providing a new value:

app_name/views.py
from django.views.generic import TemplateView

class ContactView(TemplateView):
 template_name = "contact.html"

We will also add its entry to the urls.py file to get it redirected:

project/urls.py
from django.conf.urls.defaults import *
from some_app.views import ContactView

urlpatterns = patterns('',
 (r'^connect/', ContactView.as_view()),
)

Interestingly, we can achieve the same with the on file change, and in a few lines, by
adding the following to the urls.py file:

from django.conf.urls.defaults import *

from django.views.generic import TemplateView

urlpatterns = patterns('',
 (r'^contact/',
TemplateView.as_view(template_name="contact.html")),
)

Contributed sub-frameworks

The django.contrib package contains Django's standard library. We used the
following sub-frameworks from this package in the earlier chapters in this book:

admin: This is the Django admin interface
auth: This is the user authentication system
sessions: This is the Django session framework
syndication: This is the feed generation framework

These sub-frameworks greatly simplify our work irrespective of whether we create
registration and authentication facilities, build an administration page, or provide
feeds for our content. The django.contrib package is a very important part of
Django. Knowing its subpackages and how to use them will save you a lot of time
and effort.

This section will provide you a brief introduction of other frameworks in this
package. You won't get into the details of how to use each framework, but you will
learn enough to know when to use the framework. Once you want to use a
framework in a project, you can read the online documentation to learn more about
it.

Flatpages

Web applications may contain pages that are static in nature. For example, your
website may include a set of help pages that rarely change. Django provides an
application called flatpages to serve static pages. The application is pretty simple; it
provides you a data model to store various bits of information about each page,
including the following:

The URL
The title
The content
The template name
Whether registration is required to view the page

To use the application, you can simply enable it in the INSTALLED_APPS variable in
the settings.py file and add its middleware to the MIDDLEWARE_CLASSES
variable. After that, you can store and manage your static pages using a data model
provided by the flatpages application.

Humanize

The humanize application offers a set of filters to add a human touch to your pages.

Here is a list of the available filters:

apnumber : For numbers 1-9, this returns the number spelled out. Otherwise,
it returns the number. In other words, 1 becomes 'one', 9 becomes 'nine', and
so on, whereas 10 remains 10.
intcomma : This takes an integer and converts it into a string with a comma,
for example:

4500 becomes 4,500.
45000 becomes 45,000.
450000 becomes 450,000.
4500000 becomes 4,500,000.

intword : This converts an integer into an easy-to-read form, for example:

1000000 becomes 1.0 million.

1200000 becomes 1.2 million.
1200000000 becomes 1.2 billion.

naturalday : Based on the range the date is in, if a given date is in the (+1,0,-1)
range, this shows the date as "tomorrow", "today", and "yesterday"
respectively, for example, (if today is January 26, 2007):

 25 Jan 2007 becomes yesterday.

26 Jan 2007 becomes today.
27 Jan 2007 becomes tomorrow.

naturaltime : This returns a string representing how many seconds, minutes,
or hours ago the date event occurred, for example, (If now is January 26, 2007
16:30:00):

 26 Jan 2007 16:30:00 becomes now.

26 Jan 2007 16:29:31 becomes 29 seconds ago.
26 Jan 2007 16:29:00 becomes a minute ago.
26 Jan 2007 16:25:35 becomes 4 minutes ago.
26 Jan 2007 15:30:29 becomes 59 minutes ago.
26 Jan 2007 15:30:01 becomes 59 minutes ago.
26 Jan 2007 15:30:00 becomes an hour ago.
26 Jan 2007 13:31:29 becomes 2 hours ago.
25 Jan 2007 13:31:29 becomes 1 day, 2 hours ago.
25 Jan 2007 13:30:01 becomes 1 day, 2 hours ago.
25 Jan 2007 13:30:00 becomes 1 day, 3 hours ago.
26 Jan 2007 16:30:30 becomes 30 seconds from now.
26 Jan 2007 16:30:29 becomes 29 seconds from now.
26 Jan 2007 16:31:00 becomes a minute from now.
26 Jan 2007 16:34:35 becomes 4 minutes from now.
26 Jan 2007 17:30:29 becomes an hour from now.
26 Jan 2007 18:31:29 becomes 2 hours from now.
27 Jan 2007 16:31:29 becomes 1 day from now.

ordinal : This converts an integer to its ordinal form. Here, 1 becomes '1st',
and so on between every three digits.

Sitemap

Sitemap is a framework to generate sitemaps, which are XML files that help search
engine indexers to find dynamic pages on your site. It tells the indexer how
important a page is and how often it changes. This information makes the indexing
process more accurate and efficient.

The sitemaps framework lets you express the preceding information in Python code
and then generates an XML document that represents the sitemap of your site. This
covers the most commonly used sub-frameworks from the django.contrib

covers the most commonly used sub-frameworks from the django.contrib

package. The package contains additional applications that are not as important as
the preceding ones and it is updated from time to time with new applications. To
learn about any application from the django.contrib package, you can always
read its documentation, which is available online.

Cross-site request forgery protection

We discussed how to prevent two types of web attacks in Chapter 5, Introducing
Hashtags , namely, SQL injection and cross-site scripting. Django provides protection
against another type of attack called cross-site request forgery. In this attack, a
malicious site tries to manipulate your application by tricking a user who is logged in
on your website to open a specially crafted page. This page usually contains
JavaScript code that tries to submit a form to your website. CSRF protection works
by embedding a token (that is a secret code) into all forms and verifies the token
when the form is submitted. This effectively makes CSRF attacks infeasible.

To activate CSRF protection, you just need to add the 'django.contrib.csrf.
middleware.CsrfMiddleware' parameter to the MIDDLEWARE_CLASSES
variable, and this will work, transparently, to prevent CSRF attacks.

part0044.xhtml#aid-19UOO2

The message system

Our application allows users to add each other as friends and monitor friend
bookmarks. Although these two forms of communication are related to the nature
of our bookmarking application, sometimes users want the flexibility of sending
private messages to each other. This feature is especially useful for enhancing the
social aspect of our website.

The message system can be implemented in a variety of ways. It can be as simple as
providing each user a contact form, which works by sending its content to the user's
e-mail when it is submitted. You already have all of the information needed to build
the components of this functionality:

A message form with a text field for the subject and a text area for the body
of the message
A view that displays the message form of a user and sends the contents of the
form to the user via the send_mail() function

When allowing users to send e-mails via your site, you need to be careful in order to
prevent abuse of the feature. Here, you can restrict the contact forms only to the
logged-in users or friends only.

Another approach to implement the message system is by storing and managing
messages in the database. This way, users can send and view messages using our
application itself instead of using e-mail. While this approach is more bound to our
application, and therefore keeps users on our website, it involves more work to get
implement. However, as in the previous approach, you already have all of the
information needed to implement this approach too. The components needed here
are as follows:

A data model to store messages. It should contain fields for the sender,
recipient, subject, and body. You can also add fields for the date, read status,
and so on.
A form to create messages. The fields for the subject and body are needed.
A view to list the available messages.
A view to display a message.

The preceding list is just one way that is used to implement the message system.
You can, for example, join the list and message views into a single view, or provide a
view to display the sent messages in addition to the received ones. The possibilities
are numerous and depend on how advanced you want the feature to be.

The subscription system

We offer several web feeds that enable users to monitor updates on our website.
However, some users may still prefer the old way of monitoring updates via e-mail.
For those users, you may want to implement an e-mail subscription system to the
application. For example, you can let users receive notifications when a bookmark is
posted by a friend, or when a bookmark is posted under a certain tag.

Furthermore, you can group such notifications and send them in batches to avoid
sending a large number of e-mails. The implementation details of this feature
greatly depends on how you want it to work. It can be as simple as a data model that
stores the tags that each user is subscribed to. It would have a loop that goes
through all users who are subscribed to a particular tag and sends notifications to
them when a bookmark is posted under this tag. This approach, however, is too
basic and generates a lot of e-mails. A more sophisticated approach may involve
storing notifications in a data model and sending them in one e-mail on a daily basis.

User scores

Some websites (such as Slashdot.org and reddit.com) track the activity of users by
assigning a score to each user. This score is incremented whenever the user
contributes to the website in some way. Users' scores can be utilized in a variety of
ways. For example, you can release new features to your most active users first, or
provide other advantages to active users, which will motivate other users to
contribute more to your website.

Implementing user scores is pretty simple. You need a data model to maintain scores
in the database. After that, you can use the Django model API to access and
manipulate scores from within views.

http://Slashdot.org
http://reddit.com

Summary

The purpose of this chapter is to prepare you for tasks that are not covered in this
book. It introduced you to a number of topics. When a need arises for a certain
feature, you now know where to look in order to find a framework that helps you to
implement the feature quickly and cleanly.

This chapter also gave you some ideas that you may want to implement into our
bookmarking application. Working on these features will give you more
opportunities to experiment with Django and extend your knowledge of its
frameworks and inner workings.

In the next chapter, we are going to cover various ways of database connectivity,
such as MySQL, NoSQL, PostgreSQL and so on, which is required for any database-
based application.

Chapter 11. Database Connectivity

Django is a database-agnostic framework, which means that the database fields
provided by Django are designed to work across different databases, such as SQLite
, Oracle , MySQL , and PostgreSQL . In fact, they also work on several third-party
database backends. PostgreSQL is a great database for Django in production,
whereas SQLite is used for a development environment, and you will end up doing a
lot of work if you don't want to use RDBMS for your project. This chapter will give
you the detailed difference between the two types and will show you which is a
better fit for Django, and, also, how we can actually implement them in our Django
project.

The following are the topics that we will deal with in this chapter:

SQL versus NoSQL
Django with relational databases
Django with NoSQL
Setting up a database system
The single-page application project—URL shortener

First of all, let's see the difference between SQL and NoSQL.

SQL versus NoSQL

SQL databases, or relational databases, have been around for a very long time; in
fact, the databases were roughly assumed as SQL databases until the new term was
coined—which is NoSQL.

Well, we are talking about the high-level differences between SQL and NoSQL. The
following are the differences between them:

SQL database (RDBMS) NoSQL database
SQL databases are relational databases
(RDBMS)

NoSQL databases are nonrelational or
distributed databases

SQL databases are based on tables and
its relationship with other tables

NoSQL are document based, key-value
pairs, graph database, or wide column
stores

A SQL database stores its data in rows
of a table

NoSQL is a collection of key-value pairs,
documents, graph database, or wide
column stores

SQL databases have a predefined
schema

NoSQL has a dynamic schema

SQL databases are vertically scalable NoSQL databases are horizontally

SQL database (RDBMS) NoSQL database

NoSQL databases are horizontally

scalable
SQL database examples are MySQL,
Oracle, SQLite, PostgreSQL, and MS SQL

NoSQL database examples are MongoDB,
BigTable, Redis, RavenDB, Cassandra,
HBase, Neo4j, and CouchDB

Let's try to understand the basic features of some of the famous SQL and NoSQL
databases.

SQL databases

The following sections deal with different SQL databases and their usage.

MySQL – open source

Being one of the most popular databases in the world, MySQL has some benefits
that make it suitable for all kinds of business problems. The following are a few
important benefits of MySQL:

Replication : MySQL supports replication, that is, by replicating a MySQL
database, the work load can be significantly reduced from one machine, and
an application can be easily scaled
Sharding : When the number of write operations are very high, sharding helps
by partitioning the application server that divides the database into small
chunks

PostgreSQL

As mentioned before, PostgreSQL is the most popular database within the Django
community. It also has the widest feature set of the core-supported databases.

Evolved PostgresSQL's advanced queries and features have made it possible to
achieve the complex line of conventional SQL query into much simpler lines to write
query. However, the implementation of arrays, hstore, JSON, and so on is kind of
tricky with the conventional SQL databases.

NoSQL databases

This concept was introduced when horizontal scaling was tough and RDBMS-based
databases were not able to scale as much as they were expected to. It is often
termed as Not only SQL. It provides a mechanism to store and retrieve data other
than the traditional SQL methods.

MongoDB

MongoDB is one of the most popular document-based NoSQL databases, as it stores

MongoDB is one of the most popular document-based NoSQL databases, as it stores

data in JSON-like documents. It is a nonrelational database with a dynamic schema.
It was developed by the founders of DoubleClick . It is written in C++ and is
currently used by some big companies, such as The New York Times, Craigslist, and
MTV Networks. The following are some of the benefits and strengths of MongoDB:

Speed : For simple queries, it gives good performance, as all the related data
is in a single document that eliminates join operations
Scalability : It is horizontally scalable, that is, you can reduce the workload by
increasing the number of servers in your resource pool instead of relying on a
standalone resource
Manageable : It is easy to use for both developers and administrators. This
also gives MondoDB the ability to share databases
Dynamic schema : It gives you the flexibility to evolve your data schema
without modifying the existing data

CouchDB

CouchDB is also a document-based NoSQL database. It stores data in the form of
JSON documents. The following are some of the benefits and strengths of
CouchDB:

Schema less : As a member of the NoSQL family, it also has a schema-less
property that makes it more flexible, as it has the form of JSON documents to
store data
HTTP query : You can access your database documents using your web
browser
Conflict resolution : It has automatic conflict, which is useful when you are
going to use a distributed database
Easy replication : Replicating is fairly straightforward

Redis

Redis is another open source NoSQL database that is mainly used because of its
lightening speed. It is written in the ANSI C language. The following are some of the
benefits and strengths of Redis:

Data structures : Redis provides efficient data structures to such an extent
that it is sometimes called as a data structure server. The keys stored in a
database can be hashes, lists, and strings, and can be sorted or unsorted sets.
Redis as cache : You can use Redis as a cache by implementing keys with
limited time to improve the performance.
Very fast : It is considered as one of the fastest NoSQL servers, as it works
with the in-memory dataset.

Setting up a database system

Django supports several database engines. Interestingly, however, you only need to
learn one API in order to use any of these database systems.

This is possibly because of Django's database layer that abstracts access to the
database system.

You will learn about this later, but, for now, you only need to know that regardless
of which database system you choose, you will be able to run the Django
applications developed in this book (or elsewhere) without modification.

Unlike client-server database systems, SQLite does not require a resident process in
memory, and it stores the database in a single file, making it ideal for our
development environment. That is why we have used this database throughout this
project, until now. Of course, you are free to use your preferred database
management system. We can tell Django which database system to use by editing a
configuration file. It is also worth noting that if you want to use MySQL, you will
need to install MySQL, which is the MySQL driver for Python.

Installing a database system in Django is really simple; all your need to do is install
the database you want to configure first, then add a few configuration lines in the
settings.py file, and you are done with the database setup.

Setting up MySQL

We will install and configure MySQL and its related plugins step by step in the
following sections.

Installing MySQL in Linux – Debian

Execute the following command to install MySQL in Linux (Debian here):

 sudo apt-get install mysql-server

After executing this command, you will be asked to set up MySQL and configure the
database with a username and password.

Installing the MySQL plugin for Python

To install the MySQL-related plugins that you require, use the following command:

 pip install MySQL-python

Now, open the settings.py file and add the following lines for Django to connect
with MySQL:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'django_db',
 'USER': 'your_username',
 'PASSWORD': 'your_password',
 }
}

That's it, all you need to do now is to recreate all the tables in the new database
that you just configured and run the following command:

 python manage.py syncdb

Note

You will get the django.db.utils.ConnectionDoesNotExist exception if you
have not defined the database that you are trying to access.

The advantage of Django is that you can use it with multiple databases at once.

However, you may think, what is the need of multiple databases in the same project?

Until the NoSQL database came into existence, in most of the cases, the same
database was often used to keep the records of all types of data, from critical data,
such as user details, to dump data, such as logs; all were kept in the same database
and the system faced challenges while scaling up the system.

For a multiple database system, an ideal solution could be to store the relational
information, such as users, their role, and other account information, in an SQL
database, such as MySQL. The application data, which is independent, can be stored
in a NoSQL database, such as MongoDB.

We need to define multiple databases through a configuration file. Django needs to
be told when you want to use more than one database with the database servers
you use. So, in the settings.py file, you need to change the DATABASES setting

you use. So, in the settings.py file, you need to change the DATABASES setting

with the database aliases map.

An appropriate example of the multiple database configuration can be written as
follows:

DATABASES = {
 'default': {
 'NAME': 'app_data',
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'USER': 'postgres_user',
 'PASSWORD': 's3krit'
 },
 'users': {
 'NAME': 'user_data',
 'ENGINE': 'django.db.backends.mysql',
 'USER': 'mysql_user',
 'PASSWORD': 'priv4te'
 }
}

The preceding example uses two databases, which are PostgreSQL and MySQL with
the required credentials.

Migration and the need for migration

Migration allows you to update, change, and delete models by creating migration
files that represent the model changes and which can be run on any development,
staging, or production database.

Schema migration with Django has had a long and complex history; for the last few
years, the third-party application South was the only go-to choice. If you think about
the importance of migration, Django 1.7 was released with an inbuilt support of
migration.

We need to know about South versus Django migrations as well. For those who are
familiar with South, this should feel pretty familiar and probably a little bit cleaner.
For easy reference, the following table compares the old South workflow to the
new Django migrations workflow:

Steps South Django migration
Initial migration Run syncdb and then

./manage.py
schemamigration
<appname> --initial

./manage.py
makemigrations
<appname>

Steps South Django migration
Apply migration ./manage.py migrate

<appname>
./manage.py migrate
<appname>

Non-first migration ./manage.py
schemamigration
<appname> --auto

./manage.py
makemigration
<appname>

So, from the table, we can see that Django migrations basically follow the same
process as South, at least for the standard migration process—this just simplifies
things a bit.

The new features in Django migration

The new migration code will be in the improved version of South, but will be based
on the same concepts, which are as follows:

Migration per application
Auto detection of the changes
Data migration alongside schema migration

Let's take a look at the following term list to understand the advantages of Django
migration:

Improved migration format : The much improved migration format is
readable, and can thus be optimized or examined without actual execution
Rebasing : In this, there is no need to keep or execute the whole history of
migration every time, as it will now be possible to create new first migrations
as the project grows
Improved auto detection : New and custom field changes will be detected
more easily, as migration will be built in with the improved field API
Better merge detection : The new migration format will automatically
resolve the merging between different VCS branches, which will no longer
need any work if we are able to merge the changes

Once you set up your project and start the application, that is, your application has
generated the necessary tables in your database, you are not supposed to make
complex changes to your Django models, that is, you should not delete your
attributes from a class. However, practically, that is not possible, as you might need
to change your model classes accordingly. In such cases, we have a solution to fix
these kind of problems. The process is called migration , and, in Django, these
migrations are done with a module called South.

Until the 1.7 version of Django, which is the latest one, you have to separately install
the south module. However, since Django's 1.7 migration, the south module is a
built-in module. You might have always been doing it, for example, when you

built-in module. You might have always been doing it, for example, when you

changed (changes such as adding new attributes) your model classes using the
following command:

 $python manage.py syncdb

With the newer version, manage.py syncdb has been deprecated for migration,
but if you still like the old way, this works for now.

Backend support

This is very important for any Django application that is used in production to get
migration support. Thus, choosing a database that is primarily supported by the
migration module will always be a better decision.

A few of the most compatible databases are as follows:

PostgreSQL : In terms of migration or schema support, PostgresSQL is the
most compatible database out there.
Note

You can initialize your new column with null=True, as this will be added
much faster.

MySQL : MySQL is a widely used database, as Django supports it seamlessly.
The catch here is that there is no support for transaction when schema
alteration operations are done, that is, if an operation fails, you will have to
manually revert the changes. Also, for every schema update, all the tables are
rewritten, and this could take a lot of time, and getting your application up
again can take a lot of time.
SQLite : This is the default database that comes with Django and is mainly
used for development purposes. Thus, it has little schema alteration support
that is limited to the following cases:

Creation of a new table
Data copying
Dropping an old table
Renaming a table

How to do migrations?

Migration is done mainly with the first three commands, which are as follows:

makemigrations: This is based on the changes you made to the models that
prepare the migration query

migrate: This applies the changes prepared by the makemigrations query
and lists their status
sqlmigrate: This displays the SQL query that the makemigrations query
prepared

Thus, the flow for Django's schema migration can be stated as follows:

 $python manage.py makemigrations 'app_name'

This will prepare the migration file, which will look similar to the following:

Migrations for 'app_name':
 0003_auto.py:
 - Alter field name on app_name

Then, after the file has been created, you can check the directory structure. You will
see a file named 0003_auto.py under the migration folder; you can apply the
changes with the following command:

 $ python manage.py migrate app_name

The following are the operations that you need to perform:

 Synchronize non migrated apps: sessions, admin,
messages, auth, staticfiles, contenttypes

 Apply all migrations: app_name

 Synchronizing apps without migrations:

 Creating tables...

 Installing custom SQL...

 Installing indexes...

 Installed 0 object(s) from 0 fixture(s)

 Running migrations:

 Applying app_name.0003_auto... OK

The OK message says that the migration has been applied successfully.

To make it more understandable, the migration can be explained with the following
diagram:

There are three separate entities:

Source code
Migration files
Database

A developer makes changes in the source code, mainly in the models.py file, and
alters the previously defined schema. For example, when they create a new field as
per the business requirements, or update max_length from 50 to 100.

We will complete a proper migration of our project to see how this migration

We will complete a proper migration of our project to see how this migration

actually works.

First, we have to create an initial migration of the application:

 $ python manage.py makemigrations tweet

The output of which is as follows:

 Migrations for 'tweet':

 0001_initial.py:

 - Create model HashTag

 - Create model Tweet

 - Add field tweet to hashtag

This shows that the initial migration has been created.

Now, let's change our tweet modal, which is now as follows:

text = models.CharField(max_length=160, null=False,
blank=False)

We will change the preceding tweet modal to:

text = models.CharField(max_length=140, null=False,
blank=False)

As we have changed our schema, we now have to do the migration to run the
application properly.

From the migration flow, we understood that, now, we have to run the
makemigrations command, which is as follows:

 $python manage.py makemigrations tweet

The output of which is as follows:

 Migrations for 'tweet':

 0002_auto_20141215_0808.py:

 - Alter field text on tweet

As you can see, it has detected the change in our field.

Just for verification, we will open our SQL database and check the current schema
of our tweet table.

Login to MySQL as:

 $mysql -u mysql_username -pmysql_password mytweets

In the MySQL console, write:

 $mysql> desc tweet_tweet;

This will show you the schema of the tweet table, as follows:

 +-------------------+-------------+------+-----+--------
-+----------------+

 | Field | Type | Null | Key | Default | Extra |

 +--------------+--------------+------+-----+---------+--
--------------+

 | id | int(11) | NO | PRI | NULL | auto_increment |

 | user_id | int(11) | NO | MUL | NULL | |

 | text | varchar(160) | NO | | NULL | |

 | created_date | datetime | NO | | NULL | |

 | country | varchar(30) | NO | | NULL | |

 | is_active | tinyint(1) | NO | | NULL | |

 +--------------+--------------+------+-----+---------+--
--------------+

 6 rows in set (0.00 sec)

As we have not applied our migration yet, the database clearly displays the text as
160 in the character field:

 text | varchar(160) | NO | | NULL

We will do the exact same thing after we apply our migration:

 $python manage.py migrate tweet

The following are the operations that we need to perform:

 Apply all migrations: tweet

 Running migrations:

 Applying tweet.0002_auto_20141215_0808... OK

Our migration has been successfully applied; let's verify the same from the
database.

To run the same MySQL desc command on the tweet_tweet table, use the
following:

 mysql> desc tweet_tweet;

 +--------------+--------------+------+-----+---------+--
--------------+

 | Field | Type | Null | Key | Default | Extra |

 +--------------+--------------+------+-----+---------+--
--------------+

 | id | int(11) | NO | PRI | NULL | auto_increment |

 | user_id | int(11) | NO | MUL | NULL | |

 | text | varchar(140) | YES | | NULL | |

 | created_date | datetime | NO | | NULL | |

 | country | varchar(30) | NO | | NULL | |

 | is_active | tinyint(1) | NO | | NULL | |

 +--------------+--------------+------+-----+---------+--
--------------+

 6 rows in set (0.00 sec)

Indeed! Our migration was successfully applied:

 | text | varchar(140) | YES | | NULL | |

How migrations know what to migrate

Django will never run a migration more than once on the same database, which
means that it persists this information. This information is managed by a table called
django_migrations, which is created the very first time the Django application is
started, and for every migration thereafter, a new row is inserted.

For example, here is what the table might look like after running our migration:

 mysql> select * from django_migrations;

 +----+-------+-------------------------+---------------
------+

 | id | app | name | applied |

 +----+-------+-------------------------+---------------
------+

 | 1 | tweet | 0001_initial | 2014-12-15 08:02:34 |

 | 2 | tweet | 0002_auto_20141215_0808 | 2014-12-15
08:13:19 |

 +----+-------+-------------------------+---------------
------+

The preceding table shows that there are two migrations with tagged information,
and that every time you migrate, it will skip these changes, as there is already an
entry in this table corresponding to that migration file.

This means that even if you change the migration file manually, it will be skipped.

This makes sense, as you generally don't want to run migrations twice.

However, if for some reason you really want to apply the migration twice, you can
simply delete the table entry "THIS IS NOT A OFFICIALLY RECOMMENDED WAY" and it
will work fine.

Conversely, if you want to undo all the migrations for a particular application, you
can migrate to a special migration called zero.

For example, if you type, all the migrations for the tweet application will be
reversed:

 $python manage.py migrate tweet zero

In addition to using zero, you can also use any arbitrary migration, and if that
migration is in the past, then the database will be rolled back to the state of that

migration is in the past, then the database will be rolled back to the state of that

migration, or will be rolled forward if the migration hasn't yet been run.

The migration file

So, what does the migration file contain and what exactly happens when we run the
following command?

 $python manage.py migrate tweet

After you run this, you can see a directory called migrations, where all the
migration files are stored. Let's have a look at them. As they are Python files, they
might be easy to understand.

Open the tweet/migrations/0001_initial.py file, as this is the file where the
initial migration code is created. It should look similar to the following:

-*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations

class Migration(migrations.Migration):
dependencies = [
 ('user_profile', '__first__'),
]

operations = [
 migrations.CreateModel(
 name='HashTag',
 fields=[
 ('id', models.AutoField(verbose_name='ID', serialize=False,
auto_created=True, primary_key=True)),
 ('name', models.CharField(unique=True, max_length=64)),
],
 options = {
 },
 bases=(models.Model,),
),
 migrations.CreateModel(
 name='Tweet',
 fields=[
 ('id', models.AutoField(verbose_name='ID', serialize=False,

 ('id', models.AutoField(verbose_name='ID', serialize=False,

auto_created=True, primary_key=True)),
 ('text', models.CharField(max_length=160)),
 ('created_date', models.DateTimeField(auto_now_add=True)),
 ('country', models.CharField(default=b'Global',
max_length=30)),
 ('is_active', models.BooleanField(default=True)),
 ('user', models.ForeignKey(to='user_profile.User')),
],
 options = {
 },
 bases=(models.Model,),
),
 migrations.AddField(
 model_name='hashtag',
 name='tweet',
 field=models.ManyToManyField(to='tweet.Tweet'),
 preserve_default=True,
),
]

For migration to actually work, there must be a class called Migration() that
inherits from the django.db.migrations.Migration module. This is the main
class that is used for a migration framework, and this migration class contains two
main lists, which are as follows:

Dependencies : This is the list of other migrations that must run before the
migration starts. In cases where there is a dependency, such as in the case of a
foreign key relationship, the foreign key model must exist before its key is
added here. In the preceding case, we have such a dependency on the
user_profile parameter.
Operations : This list contains the list of migrations to be applied, and the
whole migration operation can be of the following categories:

CreateModel: From the name itself, it's very clear that this will create a
new model. From the preceding model file, you can see lines such as:

migrations.CreateModel(
name='HashTag',....
migrations.CreateModel(
name='Tweet',..

These migration lines create the new model with the defined attributes.

DeleteModel: This will contain the statement to delete the model

DeleteModel: This will contain the statement to delete the model

from the database. These are the opposite to the CreateModel
method.
RenameModel: This renames the model with the given new name from
the old name.
AlterModelTable: This will change the name of the associated table
with the model.
AlterUniqueTogether: This is the unique constraints of the table
that is changed.
AlteIndexTogether: This changes the custom index set of the model.
AddField: This simply adds a new field to the existing model.
RemoveField: This drops the field from the model.
RenameField: This renames the field name from the old name to the
new name for a model.

The migration of a schema is not the only thing that needs to be migrated while
updating the application; there is another important thing called data migration .
This is the data that is already stored in the database by previous operations and,
thus, also needs to be migrated.

Data migration can be used in many situations. Among them, the most logical
situations are:

Loading an external data to the application
When there is a change in the model schema and the dataset needs to be
updated as well

Let's play with our project by loading a tweet from the username.txt file. Create
an empty migration for our project using the following command:

 $python manage.py makemigrations --empty tweet

This will generate a migration file named
mytweets/migrations/003_auto<date_time_stamp>.py.

Open this file; it will look something like the following:

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations

class Migration(migrations.Migration):

dependencies = [
 ('tweet', '0002_auto_20141215_0808'),
]

operations = [
]

This is nothing but the basic structure of the Django migration tool, and to do data
migration, we have to add the RunPython() function in the operations, as follows:

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations

def load_data(apps, schema_editor):
 Tweet(text='This is sample Tweet',
 created_date=date(2013,11,29),
 country='India',
 is_active=True,
).save()

class Migration(migrations.Migration):

dependencies = [
 ('tweet', '0002_auto_20141215_0808'),
]

operations = [
 migrations.RunPython(load_data)
]

That is all. Now, run the migrate command:

 $python manage.py migrate

These are the operations that you need to perform as follows:

 Synchronize unmigrated apps: user_profile

 Apply all migrations: admin, contenttypes, tweet, auth,
sessions

 Synchronizing apps without migrations:

 Creating tables...

 Installing custom SQL...

 Installing indexes...

 Running migrations:

 Applying contenttypes.0001_initial... FAKED

 Applying auth.0001_initial... FAKED

 Applying admin.0001_initial... FAKED

 Applying sessions.0001_initial... FAKED

 Applying tweet.0003_auto_20141215_1349... OK

After executing the preceding command, the command migrated all the applications
and finally applied our migration in which we created the new tweet from the
loaded data:

 mysql> select * from tweet_tweet;

 +----+---------+--
-----+---------------------+---------+-----------+

 | id | user_id | text | created_date | country |
is_active |

 +----+---------+--
-----+---------------------+---------+-----------+

 | 1 | 1 | This Tweet was uploaded from the file. |
2014-12-15 14:17:42 | India | 1 |

 +----+---------+--
-----+---------------------+---------+-----------+

 2 rows in set (0.00 sec)

That's awesome, right?

This kind of a solution is much needed when you have external data in the form of a
JSON or XML file.

The ideal solution will be to use the command-line argument to get the file path and
to load the data as:

 $python load data tweet/initial_data.json

Don't forget to add your migration folders to Git, as they are as important as your
source code.

Django with NoSQL

Django does not officially support the NoSQL database, but with such a great
community of developers, Django does have a fork that has MongoDB as a backend
database.

For the purpose of illustration, we will use the Django-Norel project to configure
Django with the MongoDB database.

You can find the detailed information regarding this at http://django-nonrel.org/.

MongoDB can be installed by following the steps mentioned at
http://docs.mongodb.org/manual/installation/ as per the configuration you have.

Here, we will set up MongoDB for the Debian version of Linux (specifically, Ubuntu).

Import the MongoDB public GPG Key:

 sudo apt-key adv --keyserver
hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10

Create a list file for MongoDB:

 echo 'deb http://downloads-
distro.mongodb.org/repo/ubuntu-upstart dist 10gen' | sudo tee
/etc/apt/sources.list.d/mongodb.list

Reload the local package database:

 sudo apt-get update

Install the MongoDB packages:

 sudo apt-get install -y mongodb-org

Start MongoDB:

http://django-nonrel.org/
http://docs.mongodb.org/manual/installation/

 sudo service mongod start

The single-page application project –
URL shortener

There are two ways in which MongoDB can be used with Django, which are as
follows:

MongoEngine : This is a Document-object Mapper (think of ORM, but for
document databases) that is used to work with MongoDB from Python
Django non-rel : This is a project to support Django on nonrelational (NoSQL)
databases; currently it supports MongoDB

MongoEngine

Installation of MongoEngine is required before we move further and show you how
to configure MongoEngine with Django. Install MongoEngine by typing the
following command:

 sudo pip install mongoengine

In order to protect the previous project we created, and to better understand, we
will create a separate new project for MongoDB configuration, and we will use our
existing project to configure MySQL:

 $django-admin.py startproject url_shortner

 $cd url_shortner

 $python manage.py startapp url

This will create the basic structure of the project, as we very well know.

Connecting MongoDB with Django

We will have to modify the settings.py file, and if we are only using MognoDB for
the project, which is true in this case, then we can ignore the standard database
setting. All we have to do is to call the connect() method on the settings.py

setting. All we have to do is to call the connect() method on the settings.py

file.

We will place a dummy backend for MongoDB. Just replace the following code in
the settings.py file, which is as follows:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

Replace the preceding code with the following:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.dummy'
 }
}

Authentication in Django

The advantage of MongoEngine is that it includes a Django authentication backend.

A user model becomes a MongoDB document and implements most of the methods
and attributes that a normal Django user model does, which makes MongoEngine
compatible with Django. We can also use the authentication infrastructure and
decorators, such as the login_required() and authentication() methods.
The auth module also contains the get_user() method, which takes a user ID as
an argument and returns the user object.

To enable this backend for MognoEngine, add the following in the settings.py
file:

AUTHENTICATION_BACKENDS = (
 'mongoengine.django.auth.MongoEngineBackend',
)

Storing sessions

In Django, you can use different databases to store a session for an application. To
enable the MongoEngine session that is stored in MongoDB, there must be an entry
of the django.contrib.sessions.middleware.SessionMiddleware
parameter in MIDDLEWARE_CLASSES in the settings.py file. There must also be
an entry of django.contrib.sessions in INSTALLED_APPS, which are there as

an entry of django.contrib.sessions in INSTALLED_APPS, which are there as

we started the project from Django's basic structure.

Now, all you need to do is add the following line in the settings.py file:

SESSION_ENGINE = 'mongoengine.django.sessions'
SESSION_SERIALIZER =
'mongoengine.django.sessions.BSONSerializer'

We are now all set up to get started with a small demo project, where we will
implement the URL short project in MongoDB.

Let's create a URL modal first, which is where we will store all the long URLs and
their corresponding short URLs.

Go to the following url/models.py file:

from django.db import models
from mongoengine import *
connect('urlShortener')

You are already familiar with the first two lines of the preceding code, which imports
the modules.

The third line, that is, connect('urlShortener'), connects Django with the
MongoDB database named urlShortener.

MongoDB gives many connection mechanisms that you can choose from, which are
as follows:

from mongoengine import connect
connect('project1')

The method that we are using takes MongoDB from its default port, which is 27017;
if you are running MongoDB on an other port, use the connect() method to
connect it:

connect('project1', host='192.168.1.35', port=12345)

If you configured a password to MongoDB, you can pass the parameters as:

connect('project1', username='webapp', password='pwd123')

Like Django's default model fields, MongoDB also gives you different fields, which
are:

BinaryField: This field is used to store raw binary data.
BooleanField: This is a Boolean field type.

DateTimeField: This is a datetime field.
ComplexDateTimeField: This handles microseconds exactly the way they
are instead of rounding them up like DateTimeField does.
DecimalField: This is a fixed point decimal number field.
DictField: This is a dictionary field that wraps a standard Python dictionary.
This is similar to an embedded document, but the structure is not defined.
DynamicField: This is a truly dynamic field type capable of handling
different and varying types of data.
EmailField: This is a field that validates input as an e-mail address.
FileField: This is a GridFS storage field.
FloatField: This is a floating point number field.
GeoPointField: This is a list that stores the longitude and latitude
coordinates.
ImageField: This is the image file storage field.
IntField: This is a 32-bit integer field.
ListField: This is a list field that wraps a standard field, allowing multiple
instances of the field to be used as a list in the database.
MapField: This is a field that maps a name to a specified field type. This is
similar to DictField, except that the 'value' of each item must match the
specified field type.
ObjectIdField: This is a field wrapper around MongoDB's object IDs.
StringField: This is a unicode string field.
URLField: This is a field that validates input as a URL and more.

Note

By default, fields are not required. To make a field mandatory, set the required
keyword argument of a field to True. Fields also may have validation constraints
available (such as, max_length in the preceding example). Fields may also take
default values, which will be used if a value is not provided. Default values may
optionally be a callable, which will be called to retrieve the value (as in the
preceding example).

The full list of different fields can be seen at
http://docs.mongoengine.org/en/latest/apireference.html.

Now, we will create our Url() class, which will be similar to other models that we
created so far, such as tweets and so on:

class Url(Document):
full_url = URLField(required=True)
short_url = StringField(max_length=50, primary_key=True,
unique=True)

http://docs.mongoengine.org/en/latest/apireference.html

date = models.DateTimeField(auto_now_add=True)

Let's take a look at the following term list:

full_url: This is a URL field that will store the full URL, and the same URL
where the request will be redirected when its short URL is trigged
short_url: This is the short URL for the corresponding long URL
date: This will store the date when the Url object was created

Now, we will move to view and create two classes:

Index : Here, a user can generate short URLs. This will also have a post()
method that saves every long URL.
Link : This is the short URL redirection controller. When a short URL is queried,
this controller redirects the request to a long URL, such as shown in the
following code snippet:

class Index(View):
def get(self, request):
return render(request, 'base.html')

def post(self, request):
long_url = request.POST['longurl']
short_id = str(Url.objects.count() + 1)
url = Url()
url.full_url = long_url
url.short_url = short_id
url.save()
params = dict()
params["short_url"] = short_id
params['path'] = request.META['HTTP_REFERER']
return render(request, 'base.html', params)

Let's take a look at the following term list:

The get() method is simple: it forwards the request to the base.html file
(which we will create soon)
The post() method takes the long URL from the request's POST variable and
sets the object count, just as the short URL saves the Url object to the
database:

params['path'] = request.META['HTTP_REFERER']

This is used to pass the current path to the view so that the short URL can be made
clickable with the anchor tag.

This is how this URL object is saved in DB:

{ "_id" : ObjectId("548d6ec8e389a24f5ea44258"), "full_url" :
"http://sample_long_url", "short_url" : "short_url" }

Now, we will move on to the Link() class, which will take the short URL request
and redirect to the long URL:

class Link(View):
def get(self, request, short_url):
url = Url.objects(short_url=short_url)
result = url[0]
return HttpResponseRedirect(result.full_url)

The short_url parameter is the short_url code from the requested URL:

url = Url.objects(short_url=short_url)

The preceding line queries the database to check whether the matching long URL
exists for the given short URL:

return HttpResponseRedirect(result.full_url)

This redirects the request to find the long URL from the database.

For the view, all we need to create is the base.html file.

As the aim of this project is not to teach you user interface, we will not include any
library and will make the page with as little HTML as possible.

The code for the base.html file is as follows:

<!DOCTYPE html>
 <html>
 <head lang="en">
 <meta charset="UTF-8">
 <title>URL Shortner</title>
 </head>
 <body>
 <form action="" method="post">
 {% csrf_token %}
 Long Url:

 <textarea rows="3" cols="80" name="longurl"></textarea>

 <input type="submit" value="Get short Url">
 </form>

 <div id="short_url">
 {% if short_url %}

 <a href="{{ path }}link/{{ short_url }}"
target="_blank">{{ path }}link/{{ short_url }}

 {% endif %}
 </div>
 </body>
 </html>

This shows a text area with the form, and after submitting the form, it shows the
short link beneath the long URL.

This is how the minimalistic URL shortner home page looks:

To make this work, all we need to do now is to create the required URL mapping,
which is as follows:

url_shortner/urlmapping.py

from django.conf.urls import patterns, url
from url.views import Index, Link
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
url(r'^$', Index.as_view()),
url(r'^link/(\w+)/$', Link.as_view()),
)

Summary

The purpose of this chapter is to prepare you to create your project with different
databases, and also to give you a basic idea about database migration and how
these migrations work. This will not only help you to debug your migration, but also
you can create your own data migration scripts to load the data from a JSON file, or
any other file format, directly to the Django application to initialize it.

The chapter also gave you a basic idea of how to set up Django with MongoDB, and
we also saw a small project demonstration followed by the real-world application of
scaling the Django system with MongoDB here.

Chapter 12. Using Third-party Packages

It's time to combine all the theories and principles that we learned so far and try to
understand how we can utilize third-party packages to achieve lots of possible
projects, such as the Twitter API, the use of Social Auth, and so on.

You will learn the following topics in this chapter:

Diving into the world of open source
Using Social Auth in Django projects
Building REST APIs in Django

Apart from the core modules required to build a website using Django and Python,
we need some third-party packages as well. There are many third-party packages
freely available over the Internet; you can find many useful packages at
https://www.djangopackages.com/. We will try to use open source third-party
packages for our project(s).

Diving into the world of open source

When we see the word open source, the first question that comes to our mind is
what does open source actually mean?

Well, open source is a term that refers to something whose design is publicly
accessible and can be modified by anyone as per their need, without requiring any
prior permission.

Okay then, let's move on, and dive deep into the aspects of the open source world.

What is an open source software?

Open source software means that the software's source code is publicly accessible,
thus it can be modified in any possible way. Also, anyone can contribute to the
source code, which often leads to enhancement of the software.

Now, most software users don't ever see source code, which programmers can
modify to get the result as per their need; this basically means that having the
source code in the programmer's hand gives them total control over the software.

A programmer can then move forward with the software either by fixing any bugs
or by adding any new feature to it.

What's the difference between open source and
other software?

https://www.djangopackages.com/

If the source code is not released for public access, or the code is accessible only to
the particular group of people who created it, this type of software is called
proprietary software or closed source software . Examples of closed source
software are Microsoft products, such as Microsoft Windows, Word, Excel,
PowerPoint, Adobe Photoshop, and so on.

To use proprietary software, users must agree (usually by signing a license that is
displayed the first time they run this software) that they will not do anything with
the software that the software's authors have not expressly permitted.

Whereas open source software is different. Authors of open source software make
its code available to others who would like to view that code, copy it, learn from it,
alter it, or share it. Python and Django programs are examples of open source
software.

Just as there are licenses for proprietary software, open source software also has a
license, but a much different one. These licenses promote open source
development; they allow modification and bug fixes to their own source code.

Doesn't open source just mean that something is free of charge?

"Open source doesn't just mean getting access to the source code." As explained by
Open Source Initiative , it means that anyone should be able to modify the source
code to suit a programmer's need.

There can be a misconception about what an open source ecosystem can be thought
of as. Programmers can charge the open source software they create, but that will
not make any sense, as the person buying it has the full right to modify it and
distribute it free of cost. Instead of charging for the open source software,
programmers charge for the services they build around it, such as support, or other
secondary components that add much value to the original software. Companies
such as Red Hat charge by giving support to their open source Red Hat operating
system. Elasticsearch charges for a component called marvel that monitors
Elasticsearch, which helps a lot when Elasticsearch runs in production.

A lot of people think that only Internet-famous rock star programmers can
contribute to open source projects, but, in fact, open source communities thrive on
contributions from beginners to experts, and even nonprogrammers.

Using SocialAuth in Django projects

Every website needs to store user data to give them a better and exclusive
experience, but to do this, the website needs you to register by filling out the user
details form, where they ask you to enter your basic information. Filling these can
be boring and tedious. One practical solution to such a problem is Social Auth ,
where you get registered to a site by a single click that fills up your basic
information automatically from the social site that you are already registered on.

For example, you might have seen many sites while browsing the Web that give you
the option of a couple of social buttons, such as, Google, Facebook, Twitter, and so
on, to login or register on their website. If you login or register using any of these
social buttons, they will pull up your basic details, such as e-mail, gender, and so on,
from that social site where the information is already updated, so that you don't
need to fill out the form manually.

Building the complete end-to-end implementation of this alone could be a project in
Django, and if you want your site to have the same functionality, you don't need to
reinvent the wheel. We can just import a third-party library, which, with minimal
configuration changes in the settings.py file, will make users log in or register
with the help of their existing social account.

How OAuth works

To understand how OAuth works, let's consider the following example.

OAuth is like a valet key for the Web. Most luxury cars come with a valet key, which
the owner hands down to the parking attendant. With that key, the car is not
allowed to travel longer distance, and other features, such as trunk on board luxury
features, are disabled.

In the same way, the login button you see on a website does not give the site full
access to your social account; it will simply pass on the details that you grant, or the
default information, such as an e-mail, gender, and so on.

In order to access this information, sites used to ask for a user's username and
password, which increased the risk of getting your personal information exposed or
account hacked. The possibility of people having the same username and password
for their banking account makes it more dangerous.

Thus, the aim of OAuth is to provide a method for users to grant third-party access
to their information without sharing the passwords. By following this method,
limited access can also be granted (such as, e-mail, permission to create a post, and
so on).

For example, for a login register site, it will be very weird if they ask for access to

For example, for a login register site, it will be very weird if they ask for access to

your personal photos. So, at the time of giving permission to the application using
OAuth, permission can actually be reviewed.

The following diagram gives you the overview of the OAuth mechanism:

In the preceding figure, you can see the client application that needs your
credentials asking you to either login or register using any of the social accounts.
This is shown in the first part of the figure, where the client asks the user for social
account authorization.

Once you decide to login via a social account and you grant the client application
permission to access your social account, the client application that is already
registered with the same social site with an API key of its own, asks the social site
for your user details with its API request. At this stage, you might have seen the list
of the records that the client application will access. Some sites may also let you
edit these access rights. After the server grants authorization to the client
application, the client gets an access token for your social account access.

Client application may store this access token for future use or, as it is popularly
called, offline access .

The difference between registering and logging in with this social OAuth method is
that when you are already registered, chances are that the client application will

that when you are already registered, chances are that the client application will

store your access token, so that the next time you try to log in, you don't have to go
through the same social site authorization page, as you have already given them
your authorization credentials.

Implementing social OAuth

In this section, we will learn to implement social OAuth in our existing project. To
implement social authentication for our application, we will use a third-party library
called python-social-auth. We will use Twitter social Auth to authenticate our
users. Let's take a look at the following steps:

1. First, we will install the third-party app called Python-Social-Auth . The
installation of python-social-auth can be done simply using the following
command:

 $pip install python-social-auth

2. Once we have completed the installation of this third-party library, we will
move to our mytweet application and make the configuration changes in the
settings.py file.

We are including this third-party library as an application in our application, so
we have to create the entry of this application in the INSTALLED_APPS
variable.

So, add the 'social.apps.django_app.default' parameter to the
INSTALLED_APPS variable, as follows:

INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'user_profile',
'tweet',
'social.apps.django_app.default',
)

3. Next, we need to add the AUTHENTICATION_BACKEND variable in the
settings.py file, which enlists all social login sites that we want to support.

3.
settings.py file, which enlists all social login sites that we want to support.

For this demonstration, we will add only Twitter social Auth, but as per the use
case, you can add any or as many Twitter social Auth as you want. The
AUTHENTICATION_BACKENDS parameter is the list of the Python class paths,
which knows how to authenticate the user. The default points to the
'django.contrib.auth.backends.ModelBackend' parameter. We will
add the 'social.backends.twitter.TwitterOAuth' parameter to the
AUTHENTICATION_BACKENDS variable:

AUTHENTICATION_BACKENDS = (
 'social.backends.twitter.TwitterOAuth',
 'django.contrib.auth.backends.ModelBackend',
)

4. We need to add the TEMPLATE_CONTEXT_PROCESSORS parameter, which will
add backends and associated data in the template's context, which will in turn
load the backend key with three entries, as follows:

Associated : If the user is logged in, this will be a list of UserSocialAuth
instances; otherwise, it will be empty.
Not_associated : If the user is logged in, this will be a list of
nonassociated backends; otherwise, it will contain a list of all the
available backends.
Backends : This is a list of all the available backend names. Let's take a
look at the following code snippet:

TEMPLATE_CONTEXT_PROCESSORS = (
'django.contrib.auth.context_processors.auth',
'django.core.context_processors.debug',
'django.core.context_processors.i18n',
'django.core.context_processors.media',
'django.contrib.messages.context_processors.messages',
'social.apps.django_app.context_processors.backends',
)

5. Our mytweet application already has a user model through which users are
able to log in and post tweets. We will use the same model class to create a
user from social Auth. For this, we need to add this line that tells python-
social-auth to use the existing user_profile parameter:

SOCIAL_AUTH_USER_MODEL = 'user_profile.User'

6. Now, we will add custom URLs that will be used for social Auth:

SOCIAL_AUTH_LOGIN_REDIRECT_URL = '/profile/'
SOCIAL_AUTH_LOGIN_ERROR_URL = '/login-error/'
SOCIAL_AUTH_LOGIN_URL = '/login/'

SOCIAL_AUTH_DISCONNECT_REDIRECT_URL = '/logout/'

Adding these to the settings.py file tells social Auth to fall for the
corresponding URLs in the following situation:

SOCIAL_AUTH_LOGIN_REDIRECT_URL: This URL will be triggered
when the social authentication is successful. We will use this URL to
send the logged-in user his profile page.
SOCIAL_AUTH_LOGIN_ERROR_URL: This URL will be triggered when
there is an error during social authentication.
SOCIAL_AUTH_LOGIN_URL: This is the URL from where social Auth will
be done.
SOCIAL_AUTH_DISCONNECT_REDIRECT_URL: After the user has
logged out, he/she will be redirected to this URL.

7. As we have added a new application to our existing project, we need to create
the corresponding tables in our database, which we have already learned in
the previous chapters.

Now, we need to migrate our database:

 $ python manage.py makemigrations

 Migrations for 'default':

 0002_auto_XXXX_XXXX.py:

 - Alter field user on user_profile

 $ python manage.py migrate

 Operations to perform:

 Apply all migrations: admin, default,
contenttypes, auth, sessions

 Running migrations:

 Applying default.0001_initial... OK

 Applying default.0002_auto_XXXX_XXXX... OK

8. For the last configuration change, we need to add an entry to the social Auth
URLs:

url('', include('social.apps.django_app.urls',
namespace='social'))

The updated URL patterns will look like this:

urlpatterns = patterns('',
....
url('', include('social.apps.django_app.urls',
namespace='social'))
)

Creating a Twitter application

Now, we will move ahead and create a Twitter application that will give us the API
keys to make this social Auth work:

1. Log into your Twitter account and open https://apps.twitter.com/app/new.

The page will look somewhat like this:

https://apps.twitter.com/app/new

2. Fill up the details and create your Twitter application.

As we are locally testing our app, place
http://127.0.0.1:8000/complete/twitter as the callback URL, and
also check the Allow this application to be used to Sign in with Twitter
checkbox.

When it is successfully created, your application will look like this:

3. Move ahead with the Keys and Access Tokens tab and copy the Consumer
Key (API key) and Consumer Secret (API secret) keys, as shown in the
following screenshot:

4. Add the following lines to the settings.py file:

SOCIAL_AUTH_TWITTER_KEY = 'your_key'

SOCIAL_AUTH_TWITTER_SECRET = 'your_secret'

5. Update our user class to use the Auth appropriately:

class User(AbstractBaseUser, PermissionsMixin):
"""
Custom user class.
"""
 username = models.CharField('username', max_length=10,
unique=True, db_index=True)
 email = models.EmailField('email address', unique=True)
 date_joined = models.DateTimeField(auto_now_add=True)
 is_active = models.BooleanField(default=True)
 is_admin = models.BooleanField(default=False)
 is_staff = models.BooleanField(default=False)

 USERNAME_FIELD = 'username'
 objects = UserManager()
 REQUIRED_FIELDS = ['email']
 class Meta:
 db_table = u'user'
 def __unicode__(self):
 return self.username

importing the PermissionsMixin as from |
django.contrib.auth.models import AbstractBaseUser,
PermissionsMixin

6. Now, start the server or open http://127.0.0.1:8000/login/twitter/.

This will take you to the following authorization page:

7. Click on the Sign In button as we will use this Twitter application to sign into
our app.

After this, it will redirect the request back to the mytweet app with your basic
information, as shown in the following screenshot:

If the username does not exist in our database, it will create the user profile

If the username does not exist in our database, it will create the user profile

with the Twitter username.
8. Let's create two tweets and save them.

Now, just to check whether social Auth works, we will log out and try to open the
URL again. You will get redirected to the same preceding profile page after
redirection.

So, we learned how to create a Twitter API step by step by registering your
application with Twitter to set your keys in your program. Then, we saw how our
application sends you to the Twitter site for authentication, and how it redirects you
to our site after the authentication done from the Twitter website.

Building REST APIs in Django

Representational State Transfer (REST) is the underlying architectural principle
of the Web. Any API that follows REST principles is designed so that the client who is
the browser here does not need to know anything about the structure of the API.
The API server only needs to respond to the request made by clients.

HTTP works on the verbs that get applied to the resources. Some of the verbs that
are very popular are GET and POST, but there exists other important verbs, such as
PUT, DELETE, and so on.

For example, we will use our Twitter database, which is managed by a web service as
the REST API. For all REST communication, the media type is the main thing that an
API server has to care about, and the format in which it has to respond to the client's
request. Our API service uses a custom hypermedia based on JSON, for which we
will assign the /json+tweetdb MIME type application.

A request for the base resource will return something as follows:

Request
GET /
Accept: application/json+tweetdb
Response
200 OK
Content-Type: application/json+tweetdb
{
 "version": "1.0",
 "links": [
 {
 "href": "/tweets",
 "rel": "list",
 "method": "GET"
 },
 {
 "href": "/tweet",
 "rel": "create",
 "method": "POST"
 }
]
}

We can observe the output by referring to the href links through which we are
trying to send or retrieve the information, which are nothing but Hypermedia

trying to send or retrieve the information, which are nothing but Hypermedia

controls. We can get the user list by sending another request through the /user
command with the GET request:

Request
GET /user
Accept: application/json+tweetdb
 Response
 200 OK
 Content-Type: application/json+tweetdb

 {
 "users": [
 {
 "id": 1,
 "name": "Ratan",
 "country: "India",
 "links": [
 {
 "href": "/user/1",
 "rel": "self",
 "method": "GET"
 },
 {
 "href": "/user/1",
 "rel": "edit",
 "method": "PUT"
 },
 {
 "href": "/user/1",
 "rel": "delete",
 "method": "DELETE"
 }
]
 },
 {
 "id": 2,
 "name": "Sanjeev",
 "country: "India",
 "links": [
 {
 "href": "/user/2",
 "rel": "self",

 "method": "GET"
 },
 {
 "href": "/user/2",
 "rel": "edit",
 "method": "PUT"
 },
 {
 "href": "/user/2",
 "rel": "delete",
 "method": "DELETE"
 }
]
 }
],
 "links": [
 {
 "href": "/user",
 "rel": "create",
 "method": "POST"
 }
]
}

Seeing the preceding generated output, we can guess who all the users are, and
which are the requests that we can send, such as the DELETE or PUT request. In the
same way, we can even create a new user by sending a POST request to /user, as
shown in the following code snippet:

Request
POST /user
Accept: application/json+tweetdb
 Content-Type: application/json+tweetdb
 {
 "name": "Zuke",
 "country": "United States"
 }
 Response
 201 Created
 Content-Type: application/json+tweetdb
 {
 "user": {

 "id": 3,
 "name": "Zuke",
 "country": "United States",
 "links": [
 {
 "href": "/user/3",
 "rel": "self",
 "method": "GET"
 },
 {
 "href": "/user/3",
 "rel": "edit",
 "method": "PUT"
 },
 {
 "href": "/user/3",
 "rel": "delete",
 "method": "DELETE"
 }
]
 },
 "links": {
 "href": "/user",
 "rel": "list",
 "method": "GET"
 }
 }

We can also update the existing data:

Request
PUT /user/1
Accept: application/json+tweetdb
 Content-Type: application/json+tweetdb
 {
 "name": "Ratan Kumar",
 "country": "United States"
 }
 Response
 200 OK
 Content-Type: application/json+tweetdb
 {

 "user": {
 "id": 1,
 "name": "Ratan Kumar",
 "country": "United States",
 "links": [
 {
 "href": "/user/1",
 "rel": "self",
 "method": "GET"
 },
 {
 "href": "/user/1",
 "rel": "edit",
 "method": "PUT"
 },
 {
 "href": "/user/1",
 "rel": "delete",
 "method": "DELETE"
 }
]
 },
 "links": {
 "href": "/user",
 "rel": "list",
 "method": "GET"
 }
 }

As you can easily note, we are using different HTTP verbs (GET, PUT, POST, DELETE,
and so on) to manipulate these resources.

Now, you have the basic idea of how REST works, so we will move ahead and use a
third-party library called Tastypie to play with our mytweets application.

Using Django Tastypie

Django Tastypie makes developing RESTful APIs for web applications easier.

To install Tastypie, run the following command:

 $pip install django-tastypie

Add the tastypie parameter to the INSTALLED_APPS variable in the
settings.py file.

There are many other configurable settings that an API needs, such as a limit on API
calls and so on, but by default, they are set to default initially. You can either change
this, or leave it like that.

Some of the API settings that you should know about, and can modify as per your
need, are as follows:

API_LIMIT_PER_PAGE (optional): This option controls the default number of
records that Tastypie will return in the view.applies list when a user does
not specify a limit to the GET parameter. The number of results to be returned
are not overridden by the resource subclass.

For example:

API_LIMIT_PER_PAGE = 15

The default limit here is 20 though.
TASTYPIE_FULL_DEBUG (optional): When an exception occurs, this controls
the behavior of whether to show the REST response or the 500 error page.

If set to True and settings.DEBUG = True, the 500 Error page is
displayed.

If it is not set or set to False, Tastypie returns a serialized response.

If settings.DEBUG is True, you'll get the actual exception message plus a
trace back.

If settings.DEBUG is False, Tastypie will call the mail_admins() function
and provide a canned error message (which you can override with
TASTYPIE_CANNED_ERROR) in the response.

For example:

TASTYPIE_FULL_DEBUG = True

The default is False though.
TASTYPIE_CANNED_ERROR (optional): You can write your customized error
messages when an unhandled exception is raised and settings.DEBUG is
False.

For example:

TASTYPIE_CANNED_ERROR = "it's not your fault, it's our we
will fix it soon."

The default here is "Sorry, this request could not be processed. Please try again
later."
TASTYPIE_ALLOW_MISSING_SLASH (optional): You can call the REST API
without giving the final slashes, which are mainly used to iterate the API with
other systems.

You must also have settings.APPEND_SLASH = False, so that Django
does not emit HTTP 302 redirects.

For example:

TASTYPIE_ALLOW_MISSING_SLASH = True

The default here is False.
TASTYPIE_DATETIME_FORMATTING (optional): This setting configures the
global datetime/date/time data for the API.

The valid options for this are:
iso-8601
DateTime::ISO8601
ISO-8601 (example: 2015-02-15T18:37:01+0000)
iso-8601-strict, which is the same as iso-8601 but trips the microseconds
rfc-2822
DateTime::RFC2822
RFC 2822 (for example, Sun, 15 Feb 2015 18:37:01 +0000)

TASTYPIE_DATETIME_FORMATTING = 'rfc-2822'

Take the following code as an example:

The default here is iso-8601.
TASTYPIE_DEFAULT_FORMATS (optional): This globally configures the list of
serialization formats for your entire site.

For example:

TASTYPIE_DEFAULT_FORMATS = [json, xml]

This defaults to [json, xml, yaml,html, plist].

Implementing a simple JSON API

To make REST-style architecture, we need to define the resource class for our
tweets, so let's create a api.py file in the tweets folder with the following

tweets, so let's create a api.py file in the tweets folder with the following

content:

from tastypie.resources import ModelResource
from tweet.models import Tweet

class TweetResource(ModelResource):
class Meta:
queryset = Tweet.objects.all()
resource_name = 'tweet'

We also need a URL where all the API requests will be made for this Tweet resource,
so let's add an entry for this in the urls.py file:

from tastypie.api import Api
from tweet.api import TweetResource

v1_api = Api(api_name='v1')
v1_api.register(TweetResource())

urlpatterns = patterns('',
...
url(r'^api/', include(v1_api.urls)),
)

That's all that we need to create a basic REST API for tweets.

Now, we will see the various outputs based on the variations of the REST URL. In a
browser, open the URLs, as follows, and observe the output in the .json format.

The first URL will display the Tweet API details in the .json format:

http://127.0.0.1:8000/api/v1/?format=json

{
 "tweet": {
 "list_endpoint": "/api/v1/tweet/",
 "schema": "/api/v1/tweet/schema/"
 }
}

Based on the first output, we will call our tweet API, which would give us details of
the tweet info and other details, shown as follows:

http://127.0.0.1:8000/api/v1/tweet/?format=json

{
 "meta": {
 "limit": 20,
 "next": null,
 "offset": 0,
 "previous": null,
 "total_count": 1
 },
 "objects": [
 {
 "country": "Global",
 "created_date": "2014-12-28T20:54:27",
 "id": 1,
 "is_active": true,
 "resource_uri": "/api/v1/tweet/1/",
 "text": "#Django is awesome"
 }
]
}

Our basic REST API is ready, which lists all tweets. If you look at the schema, it gives
us many details about the API, such as which HTTP methods are allowed, which
format the output will be in, and other different fields. This actually helps us to
understand what we can do using our API:

http://127.0.0.1:8000/api/v1/tweet/schema/?format=json

{
 "allowed_detail_http_methods": [
 "get",
 "post",
 "put",
 "delete",
 "patch"
],
 "allowed_list_http_methods": [
 "get",
 "post",
 "put",
 "delete",
 "patch"
],
 "default_format": "application/json",

 "default_limit": 20,
 "fields": {
 "country": {
 "blank": false,
 "default": "Global",
 "help_text": "Unicode string data. Ex: \"Hello World\"",
 "nullable": false,
 "readonly": false,
 "type": "string",
 "unique": false
 },
 "created_date": {
 "blank": true,
 "default": true,
 "help_text": "A date & time as a string. Ex: \"2010-11-
10T03:07:43\"",
 "nullable": false,
 "readonly": false,
 "type": "datetime",
 "unique": false
 },
 "id": {
 "blank": true,
 "default": "",
 "help_text": "Integer data. Ex: 2673",
 "nullable": false,
 "readonly": false,
 "type": "integer",
 "unique": true
 },
 "is_active": {
 "blank": true,
 "default": true,
 "help_text": "Boolean data. Ex: True",
 "nullable": false,
 "readonly": false,
 "type": "boolean",
 "unique": false
 },
 "resource_uri": {
 "blank": false,
 "default": "No default provided.",

 "help_text": "Unicode string data. Ex: \"Hello World\"",
 "nullable": false,
 "readonly": true,
 "type": "string",
 "unique": false
 },
 "text": {
 "blank": false,
 "default": "No default provided.",
 "help_text": "Unicode string data. Ex: \"Hello World\"",
 "nullable": false,
 "readonly": false,
 "type": "string",
 "unique": false
 }
 }
}

Some APIs might need authorized access, such as a user profile, account details, and
so on. Basic HTTP authorization can be added to the Tastypie API by just adding a
basic authorization line:

authentication = BasicAuthentication()

Basic HTTP authorization can be added with a header file as:

from tastypie.authentication import BasicAuthentication

This will ask for authentication via a basic HTTP request, which looks like the
following screenshot. Once this is successful, all requests in the current session are
authenticated.

This, followed by a demonstration, shows the real-world application of how to scale
the Django system with MongoDB.

Summary

In this chapter, you learned about open source and how to use and implement open
source third-party packages in our project. Now, you will be comfortable to
implement social Auth from Twitter. You can try the same for Facebook and Google+
by yourself as well.

In the next chapter, you will learn more about the debugging techniques that we
need to use when we face any errors or warnings in our code, or some configuration
issues. You will also learn the tools for product development, such as Git, the
Sublime Text editor, and so on.

Chapter 13. The Art of Debugging

In this chapter, you will learn three important things about Django's web
development, which every programmer should know about. These are the concepts
and techniques that you would need when your code goes wrong:

Logging
Debugging
IPDB – interactive way of busting bugs

Logging

Every application that runs on production must have some logging enabled; if not,
then it will be very difficult to figure out what and where something went wrong.

Django uses Python's basic logging, thus we will go through the Python logging in
detail in the following section and see how we can use the logging service to log in
Django.

The formal definition of logging is the tracking of events in a software. Developers
call the logging service to state that an event has occurred, or is going to occur.
Logging can consist of some description or value of any important variable that
needs to be tracked.

The logging module of Python comes with five logging functions that are
categorized based on the severity of an event. These are debug(), info(),
warning(), error(), and critical().

These are categorized in a tabular form in order of their severity (starting from the
least severe to the most severe):

debug(): This is used while fixing bugs and generally has detailed
information of the data.
info(): This makes a log when things work as they are supposed to. This
basically tells whether an execution was successful or not.
warning(): This is raised when some unexpected event occurs. This does not
actually halt the execution, but it might stop the execution in future. For
example, 'low disk space'.
error(): This is the next level of warning, which states that the execution of
some function might have halted.
critical(): This is the highest level of any logging function. This is raised
when a very serious error occurs, which might stop the execution of an entire
program.

The logging module is divided into the following four categories:

Loggers : Logger is the entry point for the log message of a system. Programs
write logging information to loggers, which then process whether it has to be
given to a console for output or should be written to file.

Every logger comprises of the preceding five logging functions. Every
message that is written to the logger is called a log record. A log record
contains the severity of the log as well as the important log variable or details,
such as an error code or a complete stack trace.

Loggers themselves have a log level, which works as: if the log level of the log
message is greater than or equal to the log level of the logger, then the
message will be further processed for logging; otherwise, it will be ignored by
the logger.

When a logger's preprocessing for a log's evaluation is done and the resulting
log has to be processed, then the message is passed to the handler.
Handlers : Handlers actually decide what to do with the log message. They
are responsible for taking actions for the log record, such as writing to the
console or to a file, or sending it over the network.

The same as loggers, handlers also have a log level. Log messages are ignored
by the handler if the log level of a log record is not greater than or equal to
the level of handler.

Multiple handlers can be binned to a logger, for example, there can be a
handler for a logger that sends ERROR and CRITICAL messages over an e-mail,
whereas another handler can write the same log to a file for a later debug
analysis.
Filters : A filter adds an extra evaluation when a log record is passed from a
logger to handler. The default behavior is that it will start processing the mails
when a log message level has met the level of a handler.

This process can be interrupted further for extra evaluation by applying filter.

For example, a filter allows only one source to log the ERROR message to a
handler.

A filter can also be used to alter the priority of the log record, so that the
logger and handler are triggered accordingly.
Formatters : The final step before the log message actually gets logged,
which will be in a text format, is that the formatter actually formats the log
record that consists of the Python formatting string.

To enable logging in our application, we will create a logger first. We need to
create the LOGGING dictionary in the settings.py file, which describes
loggers, handlers, filters, and formatters.

The full documentation about the logging setup can be found at
https://docs.python.org/2/library/logging.config.html.

The following is an example of a simple logging setup:

settings.py
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 'simple': {
 'format': '%(levelname)s %(message)s'
 },
 },
 'handlers': {
 'file':{
 'level':'DEBUG',
 'class': 'logging.FileHandler',
 'formatter': 'simple',
 'filename': 'debug.log',
 }
 },
 'loggers': {
 'django': {
 'handlers':['file'],
 'propagate': True,
 'level':'INFO',
 },
 }
}

This logger setup defines one logger (Django) that is for Django request, and a
handler (file) that writes to the log file with a formatter.

We will use the same to test the logging for our mytweet project.

Now, we need to make the logger's entry to the view, where we want to track the
event.

To test the project, we will update our user profile redirection class to make a log
whenever an unauthorized user tries to access it, and, also, when a registered user
tries to open the URL.

Open the tweet/view.py file and change the UserRedirect class to the
following:

https://docs.python.org/2/library/logging.config.html

class UserRedirect(View):
 def get(self, request):
 if request.user.is_authenticated():
 logger.info('authorized user')
 return
HttpResponseRedirect('/user/'+request.user.username)
 else:
 logger.info('unauthorized user')
 return HttpResponseRedirect('/login/')

Also, initialize the logger with an import statement and add the following code to
the preceding code:

import logging
logger = logging.getLogger('django')

That is it. Now, open the browser and click on the URL
http://localhost:8000/profile.

You will be redirected to the login page if you're not already logged in.

Now, open the debug.log file. It contains INFO of an unauthorized user, which
means that our logger is working perfectly fine:

INFO unauthorized user

Debugging

Debugging is the process of finding and removing bugs (error). When we develop
the web application with Django, we often need a case where we need to know the
variables submitted in an Ajax request.

The tools for debugging are:

The Django debug toolbar
IPDB (interactive debugger)

The Django debug toolbar

This is a set of panels that is used to display various information about the current
page's request/response, and in more detail when the panel is clicked on.

Rather than simply displaying the debug information in HTML comments, the
Django debug tool displays it in a more advanced way.

Installing the Django debug toolbar

To install the Django debug toolbar, run the following command:

 $ pip install django-debug-toolbar

After the installation, we need to do basic configuration changes to see the Django
debug toolbar.

Add the debug_toolbar parameter to the INSTALLED_APPS variable in the
settings.py file:

Application definition
INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'user_profile',
 'tweet',
 'social.apps.django_app.default',

 'tastypie',
 'debug_toolbar',
)

This is more than enough for a simple Django project. The Django debug toolbar will
automatically adjust itself when a server runs in development mode.

Restart the server to see the Django debug toolbar, as shown in the following
screenshot:

As you can see, there is a toolbar on the right-hand side of the profile page. The
Django debug toolbar has many panels, of which a few are installed as default,
which you can see in the preceding screenshot, and other third-party panels can also
be installed here as well.

Now, we will discuss the panels that are enabled by default:

VersionPath : debug_toolbar.panels.versions.VersionsPanel. This
panel shows the basic information, such as the versions of Python, Django,
and of other installed applications, if the information is available:

TimerPath : debug_toolbar.panels.timer.TimerPanel

This panel contains some very important stats for the Django development. It
shows two tables, as you can see in the preceding screenshot, which are
Resource usage and Browser timing .

Resource usage : This shows the Django resource consumption on the

Resource usage : This shows the Django resource consumption on the

server machine.
Browser timing : This shows the details on the client-side. The request
and response times are vital for knowing whether a piece of code can be
optimized, and domLoading can be looked up if too much of rendering
slows the page from getting loaded.

SettingsPath : debug_toolbar.panels.settings.SettingsPanel. A
list of settings that are defined in the settings.py file are headers
Path : debug_toolbar.panels.headers.HeadersPanel

This panel shows the HTTP request and response headers and variables from
the WSGI environment.
Request Path : debug_toolbar.panels.request.RequestPanel

This panel shows the variables from the framework, starting from the view
variables, which also has the ratancs argument variable; then, the Cookies ,
Session , and GET, and POST variables, as these are very helpful to debug the
form submission.
SQL Path : debug_toolbar.panels.sql.SQLPanel

This panel is also very important as it shows the SQL queries made to the
database for the page's response. This helps a lot at the time of scaling the
application, as queries can be thoroughly examined and combined together to
reduce database hits and improve the page response performance.

This also shows the code snippet that makes that SQL call, which is also very
helpful while debugging the application.
Static files Path :
debug_toolbar.panels.staticfiles.StaticFilesPanel

This will list all the static files used from the static files location that we had
set in the settings.py file.
Template Path : debug_toolbar.panels.templates.TemplatesPanel

This will list down the templates and context used for the current request.
Cache Path : debug_toolbar.panels.cache.CachePanel

If we enable the cache, then this will show the details of the cache hit for the
given URL.
Signal Path : debug_toolbar.panels.signals.SignalsPanel

This panel shows the list of signals and their args and receivers.
Logging Path : debug_toolbar.panels.logging.LoggingPanel

If you have enabled logging, then this panel will show the log's messages, as
shown in the following screenshot:

Redirects Path : debug_toolbar.panels.redirects.RedirectsPanel

When there is a page redirection on a URL, enable this to debug the
intermediate page. Generally, you don't debug the redirect URL, so, by
default, this is disabled.

IPDB – interactive way of busting bugs

Ipdb is an interactive source code debugger for Python programs.

Run the following command to install Ipdb:

 $pip install ipdb

Ipdb is the interactive way of debugging Python application. After installing Ipdb, to
use it in any function, just write the following code:

import ipdb;ipdb.set_trace()

This magical line will halt the whole Django execution at the point where this code is
present, and will give you an active console, where you can find out the bugs or
check the variable's value in real time.

The shortcuts for ipdb (when you are in the active console) are:

n: This refers to next
ENTER: This refers to repeat previous
q: This refers to quit
p <variable>: This is the print value
c: This refers to continue
l: This is the list where you are
s: This is to step into a subroutine
r: This means to continue till the end of the subroutine
! <python command>: To run Python command inside the active console

Summary

There is more to do than what is covered in this chapter. These were just the basics
of debugging that we are going to use in our Django projects. You learned how to
log and debug our code for a better and more efficient coding practice. We also saw
how to use Ipdb for more debugging.

In the next chapter, you will learn the various ways to deploy our Django projects.

Chapter 14. Deploying Django Projects

So, you have done a lot of work on your web application and now it is time to make
it live. To make sure that the transition from development to production goes
smoothly, there are a number of changes that must be made to the application
before it goes live. This chapter covers the changes to be made to the following
topics to help make the launch of your web application successful:

The production web server
The production database
Turning off the debug mode
Changing configuration variables
Setting error pages
Django on cloud

The production web server

We have been using the development web server that comes with Django
throughout this book. While this server is perfect for the development process, it's
definitely not intended to be a production web server, as it wasn't developed with
security or performance in mind. Therefore, it is certainly not suitable for
production.

There are several options to choose from when it comes to the web server, but
Apache is by far, the most popular choice and the Django development team
actually recommends it. The details of how to set up Django with Apache depends
on your hosting solution. Some hosting plans offer a preconfigured Django hosting
solution, where you only have to copy your project files to the server, whereas other
hosting plans give you the freedom to configure everything yourself.

The details of how to set up Apache varies depending on a number of factors that
are beyond the scope of this book. If you want to configure Apache yourself, consult
the Django documentation online at
https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/apache-auth/ for
detailed instructions.

In this section, we are going to deploy our Django application on Apache and the
mod_wsgi module. So, let's install these two first.

Run the following command to install Apache:

 $sudo apt-get install apache2

https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/apache-auth/

The mod_wsgi parameter is an Apache HTTP server module that provides a Web
Server Gateway Interface (WSGI) compliant interface to host web applications
based on Python 2.3+ under Apache.

Run the following command to install the mod_wsgi module:

 $sudo aptitude install libapache2-mod-wsgi

Django with Apache and the mod_wsgi module is the most popular way of
deploying Django in production.

In most of the cases, the development machine and the deployment machine are
different. Thus, it is advised that you copy the project folder to the
/var/www/html/ folder, so that your deployment files have limited permission and
access.

As you have installed the Apache server, try visiting localhost in your browser,
that is, 127.0.0.1. By doing this, you should see the default Apache page, as
shown in the following screenshot:

We have to make the Apache server our Django project. For that, we need to create
the configuration file for Apache.

To do so, create a mytweets.conf file in the sites-available folder that you
can find by navigating to /etc/apache2/sites-available with the following
content:

<VirtualHost *:80>
 ServerAdmin mail@ratankumar.org
 ServerName mytweets.com
 ServerAlias www.mytweets.com
 WSGIScriptAlias / /var/www/html/mytweets/mytweets/wsgi.py
 Alias /static/ /var/www/html/mytweets/static/
 <Location "/static/">
 Options -Indexes
 </Location>
</VirtualHost>

Let's take a look at the following term list that describes the various parameters
used in the preceding code snippet:

ServerAdmin: This e-mail address will be shown if you have not configured
your custom error page, which will tell users to contact this e-mail address.
ServerName: This is the name of the server you would like to run your project
on.
ServerAlias: This is the name of the site you want to run the project on.
WSGIScriptAlias: This is the location of the wsgi.py file of the project,
which was already there when we ran the first command to create the Django
project.
Alias: This is the path alias, the actual location of the folder on the disk is
mapped like a project directory.

Now, we need to enable this site configuration with the a2ensite command, and
to disable an existing site configuration, you can use the a2dissite command.

Let's enable the mytweets.conf file for Apache by using the following command:

 $a2ensite mytweets.conf

This will enable our mytweets.conf file. You can also disable the default 000-
default.conf configuration by using the following command:

 $a2dissite 000-default.conf

Note

Verify the file permission of the static files of the project. Don't forget to write an
entry in allowed host in the settings.py file.

Now, restart the server:

 $sudo service apache2 restart

That's all, Django now runs on the deployment mode, that is, it is now production
ready.

The production database

So far, we have been using SQLite as our database engine. It is simple and does not
require a resident server in memory. SQLite will perform fine in the production
mode for small websites. However, it is highly recommended that you switch to a
database engine that uses the client-server model in production. As we saw in an
earlier chapter, Django supports several database engines, including all the popular
ones. The Django team recommends you to use PostgreSQL, but MySQL should be
fine as well. Regardless of your choice, you only have to change the database
options in the settings.py file to switch to a different database engine.

If you want to use MySQL, create a database, username, and password for Django.
Then, change the DATABASE_* variables accordingly. Everything else should remain
the same. This is the whole point of the Django database layer.

Turning off the debug mode

Whenever an error occurs during development, Django presents a detailed error
page with a lot of useful information. However, when the application goes into
production, you don't want your users to see such information. Apart from
confusing your users, you risk exposing your website to security problems if you let
strangers see such information.

In the beginning when we used the django-admin.py mytweets command,
which created all the basic configuration for the project for which we used the
debug=True parameter in the settings.py file when this mode was True. The
following extra work is done by Django to help you debug the problem faster. The
memory usage of Django is more, as all the queries are stored as
django.db.connection.queries in the database.

For every error message, a proper stack trace of the message gets displayed, which
is not recommended when you run in the production mode, as this may contain
sensitive information and may weaken the security of the entire web application.

Turning off the debug mode is pretty easy. Open the settings.py file and change
the DEBUG variable to False:

DEBUG = False

Disabling debug information carries an additional benefit; you improve the
performance of the website because Django doesn't have to keep track of the
debug data in order to display it.

Changing configuration variables

There are many configuration variables that need to be created or updated for
production. The production environment is a very hostile environment. The
following is the checklist that you should go through for deployment. Check the
setting.py file properly, as each setting must be defined in the right way to keep
the project secure.

Settings can be environment-specific, such as when you run the settings locally. The
database credentials might change and even the database can change according to
the environment. While conducting the process of deployment, enable the optional
security features.

Enable performance optimizations. The first step to do so is to disable debug, which
enhances the performance of the website. If you have a proper error reporting
mechanism, once DEBUG is False, it's difficult to know what went wrong, so you
better have your logs prepared once you disable debug mode.

The following are the critical settings that must be taken care of while going for
Django's deployment:

SECRET_KEY: This key must be chosen large and randomly and should be kept
as a secret. In fact, it is recommended that you should never keep this
information in the settings.py file or in the version control repository.
Instead, keep this information somewhere safe in a nonversion controlled file
or in the environment path:

import os
SECRET_KEY = os.environ['SECRET_KEY']

This imports the key from the current operating system's environment. An
alternate suggested method is to import it from a file, which can be done
using:

with open('/etc/secret_key.txt') as f:
 SECRET_KEY = f.read().strip()

ALLOWED_HOSTS: This must have a valid host configuration. When the debug
mode is switched off, this is used to protect the CSRF attacks:

ALLOWED_HOSTS = [
 '.example.com', # Allow domain and subdomains
 '.example.com.', # Also allow FQDN and subdomains
]

ADMIN: The ADMIN key holds the names and e-mail addresses of the site
administrators. You will find it in the settings.py file, commented out as
follows:

ADMINS = (
('Your Name', 'your_email@domain.com'),
)

Insert your name and e-mail address here and remove the # symbol to
uncomment it in order to receive e-mail notifications of code errors when
they occur.

When DEBUG=False and a view raises an exception, Django will e-mail these
people with the full exception information.
EMAIL: Since the e-mail server of your production server most likely differs
from your development machine, you may want to update your e-mail
configuration variables. Look for the following variables in the settings.py
file and update them:

EMAIL_HOST
EMAIL_PORT
EMAIL_HOST_USER
EMAIL_HOST_PASSWORD

Also, your web application now has its own domain name, so you need to update the
following settings to reflect this: SITE_HOST and DEFAULT_FROM_EMAIL.

Finally, if you use caching, make sure that you have the correct settings in the
CACHE_BACKEND parameter (ideally, the memcached parameter); you don't want
the development backend to be here while you are in production.

Setting error pages

With the debug mode disabled, you should create templates for the error pages,
particularly these two files:

404.html: This template will be displayed when the requested URL does not
exist; in other words, when a page is not found, such as an uncaught
exception.

Create the two files with whatever content you like. You can, for example, put
a "Page not found" message in the 404.html template or a search form.
500.html: This template will be displayed when an internal server error
occurs.

It is recommended that you give these templates a consistent look by deriving them
from the base template of your site. Put the templates at the top in your
templates folder and Django will automatically use them.

This should cover the configuration changes that are essential for production. Of
course, this section is not conclusive and there are other settings that you may be
interested in. You can, for example, configure Django to notify you via e-mail when a
requested page is not found or provide a list of IP addresses that can see debug
information. For these and more, refer to the Django documentation in the
settings.py file.

Hopefully, this section will help you make your transition from development to
production much smoother.

Django on cloud

Deployment in web development has changed over the course of time. Most of the
start-ups are moving to a cloud setup and away from traditional VPS hosting
methods, due to reliability, performance, and ease of scalability.

The most popular cloud platforms that provide IAS (Infrastructure As a Service)
are Amazon EC2 and Google Compute Engine.

Then, we have other well-known options, such as Platform as a Service (PaaS),
where you push your code, such as you push it to a normal repository so that is gets
deployed automatically. These include Google App Engine, Heroku, and so on.

Let's get introduced to them one by one.

EC2

Deployment on EC2 is simple. Follow the given steps to deploy your desired settings
on EC2:

1. Create an account for AWS. Follow http://aws.amazon.com and click on
Create a Free Account , as shown in the following screenshot:

2. Sign up and add your credit card for the billing details. Once you are done, log
in and you will see a dashboard. For deployment, we need to create a server
called EC2 instances (it can be treated as a server) on AWS.

3. Click on EC2 (in the top-left corner), as shown in the following screenshot:

http://aws.amazon.com

As you can see in the preceding screenshot, I already have an instance running
(1 Running Instances). Click on Launch instance to create a new instance.
This will show you the available AWS images (which is like a screenshot in
VMware or the last backup disk available) for the instance:

4. Scroll down to choose the Ubuntu 64-bit instance (the Ubuntu server).

Next, choose an instance type; initially, choose the free tier, which is given to

Next, choose an instance type; initially, choose the free tier, which is given to

every new account that AWS calls the t2.micro instance type. Check for other
settings as most of them are kept at default. Move to the Tag instance and
give a name to your instance:

5. The next important thing to do is to choose a security group. AWS has this
feature to protect your server from attacks. Here, you can configure which
specific ports will be publicly accessible. Basically, you need to open two ports
to make the tweets publicly accessible.

6. You should use SSH (Port 22) to connect the system from a local machine to
deploy the code.

7. HTTP (Port 80) is used to run your Django server.

Note

As the database we will use runs on the same instance, we are not going to add the
MySQL port to the security group.

Make sure that you have configured something like the following:

Next, review and launch the instance. Also, you must create a key pair to access your
AWS machine through SSH. The key is a .pem file that you will use with SSH to log
into your machine remotely. Create a key pair and download the .pem file.

Note

Make sure that the PEM file has a specific permission of 400. Your key file must not
be publicly viewable if you want SSH to work. Use this command if needed: chmod
400 mykey.pem.

It will take a while and will appear back on your dashboard as a running instance.

Click on the instances to the left of your screen. Then, you can see your running
instance. Click on the instance row to get more details at the bottom of the screen,
as shown in the following figure:

On the right-hand side of the details, you can see the public DNS: <public DNS>
and the public IP: <public IP>. That is all you need (and the .pem file, of course,
to log in to your instance).

On your machine, go to the folder from the terminal where you downloaded the
PEM file and type $ssh -i <pemfilename>.pem ubuntu@<pubic IP> on your
terminal.

Otherwise, type the following:

$ssh -i <pemfilename>.pem ubuntu@<public Dns>.

By doing this, you will be logged in to the remote server.

This is your online system from scratch. If you want to deploy the website on your
own from your local machine, then you can go to the previous chapters and install
everything required for a virtual environment. Django and Apache perform
deployment on this server.

Once you have deployed, use the public IP we used for SSH and you should see the
deployed server.

Google Compute Engine

Google Compute Engine works on the same concept as AWS EC2. Google Compute
Engine, at present, does not give a free tier.

Google servers are known for their reliability and performance. So, if you are
thinking of a project with such a need, go for them.

Google Cloud gives you a cloud SDK to use its instances, and most of its initial
configuration can be done from the terminal.

To create an instance on Google Compute Engine go to:

https://cloud.google.com/compute/docs/quickstart.

This link will help you set up the instance that runs on an Apache server.

The open hybrid cloud application platform by Red
Hat

Red Hat gives another solution for cloud deployment, which is free upto some
usage limit, with a service called OpenShift .

You can create an OpenShift account and get a free basic 3 dynamo-based cloud
server from https://www.openshift.com/app/account/new.

After you create your account, you can go to
https://openshift.redhat.com/app/console/applications and add your account.

OpenShift gives a Django repository all set up for you with the version control pre-
configured.

All you need is to make your changes and push the code. It will automatically deploy
the code.

OpenShift also gives you the SSH feature to log in to your cloud server and some
basic troubleshooting as well.

Heroku

This is also a good platform for deploying your Django code to the cloud smoothly.
Like Google Compute Engine, Heroku also gives you an SDK tool to install and
perform the configurational changes from a local terminal. You need to get a
toolbelt (an SDK for Heroku).

Create an account on Heroku at https://signup.heroku.com.

The following are the steps taken from
https://devcenter.heroku.com/articles/getting-started-with-python. Check it out for
the latest updates. The following steps explain how to create and use Heroku:

1. First, we need to install Heroku Toolbelt . This provides you access to the
Heroku command-line utility:

https://cloud.google.com/compute/docs/quickstart
https://www.openshift.com/app/account/new
https://openshift.redhat.com/app/console/applications
https://signup.heroku.com
https://devcenter.heroku.com/articles/getting-started-with-python

 $wget -qO- https://toolbelt.heroku.com/install-
ubuntu.sh | sh

The following screen will appear:

2. It will install Heroku Toolbelt on your local machine. Log in to Heroku from the
command line:

 $heroku login

3. Use the same username and password as you did for the Web login. Let's take
a look at the following screenshot:

4. Now, go to https://devcenter.heroku.com/articles/getting-started-with-django
to deploy Django on Heroku.

Google Application Engine

Google Application Engine works differently, it does not work on the traditional
database, instead it has its own database. Thus, to deploy Django on Google
Application Engine, we will use a separate project called Django-nonrel .

Django-nonrel is a project that allows developers to run native Django projects
(including Django's ORM) on nonrelational databases, one of which is Google
Application Engine's datastore. This is all in addition to the standard traditional SQL
databases that were always supported by Django. Google Application Engine does
come with some Django support, but the support is mainly regarding templating
and views. For other tools that allow rapid development, such as forms, the built-in
administration interface or Django authentication just won't run out of the box.
Django-nonrel changes this for Django developers.

https://devcenter.heroku.com/articles/getting-started-with-django

Summary

This chapter covered a variety of interesting topics. You learned about several
Django-based deployment options that are useful while deploying Django. You also
learned how to move a Django project from a development environment to a
production environment. Notably, the frameworks that you learned about are all
very easy to use, so you will be able to effectively utilize them in your future
projects.

Chapter 15. What's Next?

Web development has evolved over time and so have the devices where users
consume information. The Web was designed for large-screen devices earlier, but
recent trends show that consumption of the devices with small screen size and the
devices that can be held in hand has increased. Thus, here arises the need to mold
the Web to serve small-screen devices, but these devices are very power sensitive.
So, there is the need to separate the backend functions from the frontend functions
in Django.

One such most widely used solution is to use Django backend with an API enabled at
the frontend to use it with Django. Using AngularJS for such a situation is most
suited.

REST has been the future of web development and REST APIs are rather an integral
part of the modern Web. As the fragmentation across a device increases, there
arises a need of single minimal endpoint, which does not perform any presentation
operation. For instance, the information retrieval or commutation could be as fast as
possible and could also be scaled, and the presentation or business logic for this is
left in the hands of modern browsers using a frontend framework.

AngularJS meets Django

AngularJS is a modern JavaScript framework used to create complex web
applications within a browser.

Since the birth of AngularJS in 2009, it has been evolving very fast and is being
widely accepted as a production-grade frontend framework. It is now maintained by
Google.

AngularJS has a very interesting birth story. It got its big attention when one of the
creators of angular recreated a web application in 3 weeks, which initially took 6
months to develop, by reducing the number of lines of code from 17,000 to 1,000.

AngularJS has many features over conventional web development frameworks.
Among them, a few unique and innovative features are two-way data bindings,
dependency injection, easy-to-test code, and extending the HTML dialect using
directives.

For the server side, we can use the Django REST Framework or Tastypie for REST
endpoints. Then, we can use AngularJS, which focuses on the MVC model, to
encourage the creation of easily maintainable modules.

Web technologies have evolved from synchronous to asynchronous, that is, the
website requests now heavily use asynchronous calls to refresh its content without

website requests now heavily use asynchronous calls to refresh its content without

reloading the page, an example of which is your Facebook wall.

AngularJS is one of the solutions for the asynchronous need in a better way for
Django web development.

In the following example, we will use AngularJS to create a single page, which uses
the tweet's API that we already created.

We will use AngulaJS to list all the tweets, but before that, we need to get
familiarized with AngularJS's key terms:

Directives : For this, the HTML file is extended with custom attributes and
elements. AngularJS extends the HTML with ng-directives . The ng-app
directive is used to define AngularJS's application. The ng-model directive
binds the value of HTML controls (input, checkbox, radio, select, and text area)
to the application. The data.ng-bind directive binds the application data to
the HTML view.
Model : This is the data shown to the user in the view and with which the user
interacts.
Scope : This is the context where the model is stored, so that controllers,
directives, and expressions can access it.
Controller : This is the main business logic behind views.

When we design an API-based web application, there is a high chance that both (the
API's backend and the webapp frontend) of them reside on different servers. Thus,
there arises a need to configure Django for Cross-origin resource sharing .

From the definition explained on Wikipedia:

Cross-origin resource sharing (CORS) is a mechanism that allows many
resources (for example, fonts, JavaScript, and so on) on a web page to be
requested from another domain outside the domain from which the
resource originated.

We need to alter our Django API to allow requests from other servers as well. We
will now update the api.py file of the tweets application to allow the requests
to the server cross-site request:

class CORSResource(object):
 """
 Adds CORS headers to resources that subclass this.
 """
 def create_response(self, *args, **kwargs):
 response = super(CORSResource, self).create_response(*args,
**kwargs)
 response['Access-Control-Allow-Origin'] = '*'

 response['Access-Control-Allow-Headers'] = 'Content-Type'
 return response

 def method_check(self, request, allowed=None):
 if allowed is None:
 allowed = []

 request_method = request.method.lower()
 allows = ','.join(map(unicode.upper, allowed))
 if request_method == 'options':
 response = HttpResponse(allows)
 response['Access-Control-Allow-Origin'] = '*'
 response['Access-Control-Allow-Headers'] = 'Content-Type'
 response['Allow'] = allows
 raise ImmediateHttpResponse(response=response)

 if not request_method in allowed:
 response = http.HttpMethodNotAllowed(allows)
 response['Allow'] = allows
 raise ImmediateHttpResponse(response=response)
 return request_method

After adding this class, we can create a subclass of any resource that we want to
expose for a cross-domain request. We will now change our Tweet class to make it
available for cross-site access.

Let's update the Tweet class to the following:

class TweetResource(CORSResource, ModelResource):
 class Meta:
 queryset = Tweet.objects.all()
 resource_name = 'tweet'

Now, the tweet resource is ready for access from different domains.

The following is a basic AngularJS example:

Create a single HTML file called app.html (as this file is independent of our
existing Django project, we can create it outside the project folder) with the
following content. Currently, this page uses AngularJS from a local disk, you can
import the page from a CDN as well:

<html ng-app="tweets">
 <head>

 <title>Tweets App</title>
 <script src="angular.min.js"></script>
 </head>
 <body>
 <div ng-controller="tweetController">
 <table>
 <tr ng-repeat="tweet in tweets">
 <td>{{ tweet.country }}</td>
 <td>{{ tweet.text }}</td>
 </tr>
 </table>
 </div>
 <script src="app.js"></script>
 </body>
</html>

In the following code, the ng-controller directive is triggered at its render time,
which processes any business logic and injects the calculated models inside the
scope.

The <div ng-controller="tweetController"> tag is one example where the
tweetController parameter is processed before its div is rendered.

We have our business logic completely in JavaScript in the app.js file:

var app = angular.module('tweets', []);
app.controller("tweetController", function($scope,$http) {
 $http({ headers: {'Content-Type': 'application/json;
charset=utf-8'},
 method: 'GET',
 url: "http://127.0.0.1:8000/api/v1/tweet/?format=json"
 })
 .success(function (data) {
 $scope.tweets = data.objects;
 })
});

This app.js file makes a request to the API endpoint of tweets and injects the
tweets object to the scope, which is rendered by the AngularJS in view (app.html)
with the ng-repeat loop directive:

 <tr ng-repeat="tweet in tweets">
 <td>{{ tweet.country }}</td>

 <td>{{ tweet.text }}</td>
 </tr>

The output of the preceding code is shown in the following figure, which shows the
country and tweets:

This is just a basic AngularJS application, as advanced web development has moved
from backend to frontend completely. An AngularJS-based application is best suited
for a complete single-page application.

Django search with Elasticsearch

Search has become an integral part of most of the applications we deal with
nowadays. From Facebook, to search for a friend, to Google, where you search the
whole Web, everything from blog to log needs a search capability to unlock the
hidden information on a website.

The Web is evolving at an exponential rate. A GB of data is now obsolete and
hundreds of terabytes of both structured and unstructured data is generated every
day.

Elasticsearch (ES) is better than other alternatives because, in addition to
providing full-text search, it provides meaningful real-time data analytics and is
highly scalable with a strong support for clustered data infrastructure.

Elasticsearch also gives you a simple REST API that can easily integrate with any
custom application and a Django (and more broadly, Python) development
environment gives a lot of cool, out-of-the-box tools to implement Elasticsearch.

The Elasticsearch website (http://www.elasticsearch.org/) contains a thorough
documentation and there are lots of great examples online that will help you build
any kind of search you need. By making full use of Elasticsearch, you can probably
build your own "Google" with it.

Installing an Elasticsearch server

First, install Java. Then, download and extract Elasticsearch. You can either run ES as
a service or you can start an ES server using the following Shell commands (change
paths in accordance with your system):

 set JAVA_HOME=\absolute\path\to\Java

 \absolute\path\to\ES\bin\elasticsearch

If it is done correctly, you can call the following URL in your browser:

http://127.0.0.1:9200/

It will give you a response in the following way, but with a different build_hash
parameter:

{

http://www.elasticsearch.org/

 "status" : 200,
 "name" : "MN-E (Ultraverse)",
 "cluster_name" : "elasticsearch",
 "version" : {
 "number" : "1.4.1",
 "build_hash" : "89d3241d670db65f994242c8e8383b169779e2d4",
 "build_timestamp" : "2014-11-26T15:49:29Z",
 "build_snapshot" : false,
 "lucene_version" : "4.10.2"
 },
 "tagline" : "You Know, for Search"
}

Elasticsearch comes with basic configurations for basic deployment. However, if you
want to tweak the configuration, then refer to its online documents and change the
Elasticsearch configuration in the elasticsearch.yml file.

Communication between Elasticsearch and Django

Django can be seamlessly integrated with Elasticsearch using basic Python
programming. In this example, we will use the Python requests library to make the
request from Django to Elasticsearch We can install requests by typing the
following code:

 $pip install requests

For the search functionality, there are mainly three operations that we need to
execute:

1. Create an Elasticsearch index.
2. Feed the index with data.
3. Retrieve the search results.

Creating an Elasticsearch index

Before loading an Elasticsearch index with text and retrieving the search results,
Elasticsearch has to know some details about your content and how data should be
treated. Therefore, we create an ES index that consists of settings and mappings.
Mappings are the ES equivalents of Django's models—data field definitions for your
content.

Although mappings are completely optional, as Elasticsearch dynamically creates a
mapping from the information that it has got for indexing, but it is advised that you

mapping from the information that it has got for indexing, but it is advised that you

predefine the data map for indexing.

A Python example for creating an ES index is as follows:

 data = {
 "settings": {
 "number_of_shards": 4,
 "number_of_replicas": 1
 },
 "mappings": {
 "contacts": {
 "properties": {
 "name": { "type": "string" },
 "email": { "type": "string" },
 "mobile": { "type": "string" }
 },
 "_source": {
 "enabled": "true"
 }
 }
 }
 }
}

import json, requests
response = requests.put('http://127.0.0.1:9200/contacts/',
data=json.dumps(data))
print response.text

The output of the preceding code is shown in the following figure:

For every operation done with Elasticearch, it gives a response message such as
{"acknowledged":true}, which means that our index has been created
successfully by Elasticsearch.

We can check whether the mapping has actually been updated or not by making a
query command such as:

 mapping_response =
requests.get('http://127.0.0.1:9200/contacts/_mappings')

 print mapping_response.text

The following figure shows that Elasticsearch has been updated with the new
mapping:

After we created our first Elasticsearch index, we created the JSON dictionary with
the information and dumped this information into Elasticsearch via Python requests.
The "contacts" parameter is the index name we have choosen and we will use this
name to feed and retrieve data from the Elasticsearch server. The "mappings" key
describes what data your index will hold. We can have as many different mappings
as we like. Every mapping contains a field in which data is stored, exactly, like a
Django model. Some of the basic core fields are string, number, data, Boolean, and
so on. The full list is given in the Elasticsearch documentation. The "shards" and
"replicas" parameters are explained in the ES glossary. Without the "settings" key,
ES would simply use the default values—which in most cases is perfectly fine.

Feeding the index with data

Now that you have created an index, let's store content inside it. An example Python
code for our imaginary BlogPost model that contains a title, description, and
content as text fields is as follows:

import json, requests
data = json.dumps(
 {"name": "Ratan Kumar",
 "email": "mail@ratankumar.org",
 "mobile": "8892572775"})
response =
requests.put('http://127.0.0.1:9200/contacts/contact/1',
data=data)
print response.text

You will see the output, which is shown as follows:

This acknowledgment shows that our contact data has been indexed. Of course,
indexing a single data and searching it does not makes much sense, so we will index
more contacts before we make a retrieval query.

Elasticsearch also provides bulk indexing, which can be used as follows:

import json, requests
contacts = [{"name": "Rahul Kumar",
 "email": "rahul@gmail.com",
 "mobile": "1234567890"},
 {"name": "Sanjeev Jaiswal",
 "email": "jassics@gmail.com",
 "mobile": "1122334455"},
 {"name": "Raj",
 "email": "raj@gmail.com",
 "mobile": "0071122334"},
 {"name": "Shamitabh",
 "email": "shabth@gmail.com",
 "mobile": "9988776655"}
]

for idx, contact in enumerate(contacts):
 data += '{"index": {"_id": "%s"}}\n' % idx
 data += json.dumps({
 "name": contact["name"],
 "email": contact["email"],
 "mobile": contact["mobile"]
 })+'\n'

Let's take a look at the following screenshot:

As you can see in the preceding screenshot, the "status": 201 parameter, which in
the HTTP status means that the record is successfully created. Elasticsearch reads
data line by line, so we used "\n" at the end of every dataset. Bulk operations are
much faster than running the multiple single request.

This example is a simple JSON example. When we use Elasticsearch with our Django
application, the same JSON object can be replaced by the Django model and to
index the model, you can get all the Django model objects from the
ModelName.objects.all() query and then parse and save it. Also, in the case of
the manual ID, as we used in the preceding example, which is the index count, it will
be much more convenient if you use a primary key to index it as an Elasticsearch ID.

be much more convenient if you use a primary key to index it as an Elasticsearch ID.

This will help us to directly query for a result object if we are not passing the object
information as a payload.

Retrieving search results from the index

Searching an index is rather simple. Again, we use Python requests to send a JSON-
encoded data string to our ES endpoint:

data = {
 "query": {
 "query_string": { "query": "raj" }
 }
}

response =
requests.post('http://127.0.0.1:9200/contacts/contact/_search',
data=json.dumps(data))
print response.json()

This gives a result, as shown in the following figure:

In the example, we are looking for the term "raj" in our contacts index. ES returns all
the hits ordered by relevancy in the JSON-encoded format. Each of these hits
contains an "_id" field that gives you the primary key of the concerned blog post.
Using Django's ORM, it's now simple to retrieve the actual objects from the
database.

Note

The ES search endpoint offers an unlimited set of options and filters; fast retrieval
from huge datasets, pagination, and everything you need to build a powerful search

from huge datasets, pagination, and everything you need to build a powerful search

engine.

This is just the tip of the iceberg. When you will build your Django application with
Elasticsearch, you will explore many interesting features, such as aggregation, which
can be used in the preceding example. It lists all the contact information of Ratan
and autocomplete, which will be used to suggest a user the complete name from
Elasticsearch, as they start typing in the search box for a contact.

Summary

In this chapter, we learned about the two important components that are used most
often when the Django project is involved, namely, AngularJS and Elasticsearch. As
frontend framework, AngularJS not only decreases the load from the server by
pushing the render logic to a browser, it also gives a rich experience to the users
when using an AngularJS-powered application.

Elasticsearch, on the other hand, is one of the most popular search engines used,
which is open source as well. The ease of setting up and scaling Elasticsearch is what
makes it the choice for any search engine requirement. You learnt a bit about
Django as well. As the chapter started, we're sure that you'll had the aim of learning
a skill and of becoming experts in it. Well, this is just the beginning; there are more
things that you need to explore to reach at the expert level in each topic that was
discussed in this chapter. We have reached at the end of this book. In this book, we
went through the process of building a micro blogging application from scratch
using Django as our framework. We covered a lot of topics related to Web 2.0 and
social applications, as well as many Django components. You can always refer to the
online documentation of Django. If you want to learn more about a particular
feature or component, visit https://docs.djangoproject.com.

Thanks for choosing this book to learn the Django web development basics. We wish
you all the success in your professional life.

https://docs.djangoproject.com

Index

A

activate script / Installing virtualenv
activation links

handling / Handling activation links
admin.py files

defining / Django's user objects
administration interface

customizing / Customizing the administration interface
administration templates

overriding / Overriding administration templates
ADMIN key / Changing configuration variables
AJAX

advantages / AJAX and its advantages
AJAX framework

using, in Django / Using an AJAX framework in Django
advantages / Using an AJAX framework in Django

Alias parameter / The production web server
ALLOWED_HOSTS / Changing configuration variables
AngulaJS

directives / AngularJS meets Django
model / AngularJS meets Django
scope / AngularJS meets Django
controller / AngularJS meets Django

AngularJS
Django, working with / AngularJS meets Django
about / AngularJS meets Django

AngularJs / What has changed in web development
Apache

using / The production web server
about / The production web server

Appliaction Program Interface (API) / Tight integration between the
component and modular framework
app loading refactor / What's new in Django 1.6 and 1.7
arguments, field types

null / Familiarization with the Django models
blank / Familiarization with the Django models
choices / Familiarization with the Django models
default / Familiarization with the Django models
help_text / Familiarization with the Django models
primary_key / Familiarization with the Django models

attributes, Admin class

part0021.xhtml#aid-K0RQ2
part0065.xhtml#aid-1TVKI2
part0042.xhtml#aid-181NK2
part0059.xhtml#aid-1O8H61
part0061.xhtml#aid-1Q5IA1
part0094.xhtml#aid-2PKKS1
part0048.xhtml#aid-1DOR01
part0049.xhtml#aid-1ENBI1
part0049.xhtml#aid-1ENBI1
part0091.xhtml#aid-2MP362
part0094.xhtml#aid-2PKKS1
part0098.xhtml#aid-2TEN42
part0098.xhtml#aid-2TEN42
part0098.xhtml#aid-2TEN42
part0098.xhtml#aid-2TEN42
part0098.xhtml#aid-2TEN42
part0098.xhtml#aid-2TEN42
part0015.xhtml#aid-E9OE1
part0069.xhtml#aid-21PMQ1
part0091.xhtml#aid-2MP362
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721

list_filter / Customizing listing pages
ordering / Customizing listing pages
search_fields / Customizing listing pages

authentication, Django
about / Authentication in Django

autocompletion, of hashtags
implementing / Autocompletion of hashtags while submitting a tweet

AWS

about / Minimal Bootstrap

B

backend support
about / Backend support

benefits, MySQL
replication / MySQL – open source
sharding / MySQL – open source

Bitbucket
about / Supported databases

/ Setting up your Git
blank lines, indentation

two blank lines / The importance of blank lines
single blank line / The importance of blank lines

bookmark editing
implementing / Implementing bookmark editing

bootstrap
about / Minimal Bootstrap
URL / Setting up the basic Twitter Bootstrap for the application

Bootstrap / What has changed in web development
bootstrap, using with Django

Django way / The Django way
manual installation, of bootStrap / Manual installation of Bootstrap

bootstrap documentation
URL / Setting up the basic Twitter Bootstrap for the application

branch
about / Branching in Git

branching / Branching in Git

C

C / Understanding indentation in Python
C++

about / MongoDB
caching

used, for improving site performance / Caching – improving the

part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0060.xhtml#aid-1P71O2
part0081.xhtml#aid-2D7TI2
part0054.xhtml#aid-1JFUC2
part0032.xhtml#aid-UGI01
part0080.xhtml#aid-2C9D02
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0018.xhtml#aid-H5A41
part0029.xhtml#aid-RL0A1
part0024.xhtml#aid-MSDG2
part0024.xhtml#aid-MSDG2
part0053.xhtml#aid-1IHDQ2
part0032.xhtml#aid-UGI01
part0037.xhtml#aid-1394Q2
part0015.xhtml#aid-E9OE1
part0032.xhtml#aid-UGI01
part0032.xhtml#aid-UGI01
part0037.xhtml#aid-1394Q2
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0024.xhtml#aid-MSDG2
part0079.xhtml#aid-2BASE1
part0067.xhtml#aid-1VSLM1

used, for improving site performance / Caching – improving the

performance of your site during high traffic
enabling / Enabling caching
configuring / Configuring caching
configuring, for whole site / Caching the whole site
configuring, for specific views / Caching specific views

caching, options
Simple Caching / Enabling caching
Database Caching / Enabling caching
Filesystem Caching / Enabling caching
Memcached / Enabling caching

CamelCase naming convention / Naming conventions in Python/Django
class-based generic views

about / Class-based generic views
using / Class-based generic views

class-based views
defining / Introduction to class-based views

Client() class
get method / The test client
post method / The test client
login method / The test client

closed source software
about / What's the difference between open source and other
software?

CMD / Installing virtualenv
commands, Git

$git add <file-name> / Setting up your Git
$git add / Setting up your Git
$git status / Setting up your Git
$git diff / Setting up your Git
$ git commit -m / Setting up your Git
$ git rm <file-name> / Setting up your Git
$git stash / Setting up your Git
$git stash apply / Setting up your Git

commands, migration
makemigrations / How to do migrations?
migrate / How to do migrations?
sqlmigrate / How to do migrations?

compatible databases
PostgreSQL / Backend support
MySQL / Backend support
SQLite / Backend support

components, grid
container / Setting up the basic Twitter Bootstrap for the application
row / Setting up the basic Twitter Bootstrap for the application

part0067.xhtml#aid-1VSLM1
part0067.xhtml#aid-1VSLM1
part0067.xhtml#aid-1VSLM1
part0067.xhtml#aid-1VSLM1
part0067.xhtml#aid-1VSLM1
part0067.xhtml#aid-1VSLM1
part0067.xhtml#aid-1VSLM1
part0067.xhtml#aid-1VSLM1
part0067.xhtml#aid-1VSLM1
part0067.xhtml#aid-1VSLM1
part0024.xhtml#aid-MSDG2
part0072.xhtml#aid-24L8G1
part0072.xhtml#aid-24L8G1
part0039.xhtml#aid-1565U1
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0083.xhtml#aid-2F4UM1
part0083.xhtml#aid-2F4UM1
part0021.xhtml#aid-K0RQ2
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2

column / Setting up the basic Twitter Bootstrap for the application
configuration variables

changing / Changing configuration variables
content

organizing, into pages / Organizing content into pages – pagination
contributed sub-frameworks

about / Contributed sub-frameworks
CouchDB

about / CouchDB
benefits / CouchDB
strengths / CouchDB

critical() function
about / Logging

Cross-origin resource sharing (CORS) / AngularJS meets Django
cross-site request forgery (CSRF) protection

about / Cross-site request forgery protection
custom filters

creating / Custom template tags and filters
raw string / Custom template tags and filters
safe string / Custom template tags and filters
escape string / Custom template tags and filters

custom template tags

creating / Custom template tags and filters

D

data.ng-bind directive / AngularJS meets Django
database

setting up / Setting up the database
database system

installing / Installing a database system
setting up / Setting up a database system

data migration / The migration file
Debian / Installing Python on Unix/Linux
debug() function

about / Logging
debugging

about / Debugging
with Django debug toolbar / The Django debug toolbar

debug mode
disabling / Turning off the debug mode

development server
launching / Launching the development server

Disqus
about / Supported databases

part0037.xhtml#aid-1394Q2
part0094.xhtml#aid-2PKKS1
part0063.xhtml#aid-1S2JE2
part0073.xhtml#aid-25JP21
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0087.xhtml#aid-2IV0U2
part0098.xhtml#aid-2TEN42
part0074.xhtml#aid-26I9K1
part0071.xhtml#aid-23MNU1
part0071.xhtml#aid-23MNU1
part0071.xhtml#aid-23MNU1
part0071.xhtml#aid-23MNU1
part0071.xhtml#aid-23MNU1
part0098.xhtml#aid-2TEN42
part0030.xhtml#aid-SJGS1
part0021.xhtml#aid-K0RQ2
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0021.xhtml#aid-K0RQ2
part0087.xhtml#aid-2IV0U2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0093.xhtml#aid-2OM4A1
part0031.xhtml#aid-TI1E1
part0018.xhtml#aid-H5A41

Django / What has changed in web development
features / Why Django?, Inside Django
perfect web development framework / Django is mature
batteries included philosophy / Batteries included
integration, between component/modular framework / Tight
integration between the component and modular framework
ORM layer / Object-relational mapper
clean URL design / Clean URL design
automatic administration interface / Automatic administration interface
advanced development environment / Advanced development
environment
supported databases / Supported databases
best practices / Best practices – using version control
about / A word about Django terminology
AJAX framework, using / Using an AJAX framework in Django
deploying / Deploying Django
production web server, using / The production web server
URL, for documentation / The production web server
MongoDB, connecting with / Connecting MongoDB with Django

Django, with NoSQL
about / Django with NoSQL

Django-nonrel
about / Google Application Engine

Django-Norel project
URL / Django with NoSQL

Django 1.6
features / What's new in Django 1.6 and 1.7

Django 1.7
URL, for features / What's new in Django 1.6 and 1.7

Django authentication
about / Authentication in Django

Django coding style
about / Django coding style
indentation, in Python / Understanding indentation in Python
package, importing / Importing a package
imported packages, grouping / Grouping imported packages
naming conventions / Naming conventions in Python/Django

Django debug tool
about / The Django debug toolbar

Django debug toolbar
about / The Django debug toolbar
installing / Installing the Django debug toolbar
panels / Installing the Django debug toolbar
SQL Path / Installing the Django debug toolbar

part0015.xhtml#aid-E9OE1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0018.xhtml#aid-H5A41
part0029.xhtml#aid-RL0A1
part0034.xhtml#aid-10DJ41
part0049.xhtml#aid-1ENBI1
part0069.xhtml#aid-21PMQ1
part0069.xhtml#aid-21PMQ1
part0069.xhtml#aid-21PMQ1
part0081.xhtml#aid-2D7TI2
part0080.xhtml#aid-2C9D02
part0096.xhtml#aid-2RHM02
part0080.xhtml#aid-2C9D02
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0081.xhtml#aid-2D7TI2
part0024.xhtml#aid-MSDG2
part0024.xhtml#aid-MSDG2
part0024.xhtml#aid-MSDG2
part0024.xhtml#aid-MSDG2
part0024.xhtml#aid-MSDG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2

Django documentation online
URL / The production web server

Django forms
defining / Django forms
tasks, defining / Django forms

Django installation
about / Installing Django
download link / Installing Django
compatibility, with operating system / Django compatibility with
operating systems – Windows versus Linux
on Windows / Installing Django on Windows
on Unix/Linux / Installing Django on Unix/Linux and Mac OS X
on Mac OS X / Installing Django on Unix/Linux and Mac OS X

Django migration
new features / The new features in Django migration
advantages / The new features in Django migration

Django models
defining / Familiarization with the Django models

Django non-rel
about / The single-page application project – URL shortener

Django on cloud
about / Django on cloud
EC2 / EC2
Google Compute Engine / Google Compute Engine
Red Hat / The open hybrid cloud application platform by Red Hat
OpenShift / The open hybrid cloud application platform by Red Hat
Heroku / Heroku
Google Application Engine / Google Application Engine

Django project
creating / Creating your first project
empty project, creating / Creating an empty project
__init__.py file / Creating an empty project
manage.py file / Creating an empty project
settings.py file / Creating an empty project
url.py file / Creating an empty project
database, setting up / Setting up the database
development server, launching / Launching the development server
setting up, Sublime text editor used / Setting up your project with the
Sublime text editor
structure / The Django project structure

Django REST Framework / AngularJS meets Django
Django search, with Elasticsearch

about / Django search with Elasticsearch
Django settings, for mytweets project

part0091.xhtml#aid-2MP362
part0044.xhtml#aid-19UOO2
part0044.xhtml#aid-19UOO2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0041.xhtml#aid-173721
part0081.xhtml#aid-2D7TI2
part0096.xhtml#aid-2RHM02
part0096.xhtml#aid-2RHM02
part0096.xhtml#aid-2RHM02
part0096.xhtml#aid-2RHM02
part0096.xhtml#aid-2RHM02
part0096.xhtml#aid-2RHM02
part0096.xhtml#aid-2RHM02
part0022.xhtml#aid-KVCC2
part0022.xhtml#aid-KVCC2
part0022.xhtml#aid-KVCC2
part0022.xhtml#aid-KVCC2
part0022.xhtml#aid-KVCC2
part0022.xhtml#aid-KVCC2
part0022.xhtml#aid-KVCC2
part0022.xhtml#aid-KVCC2
part0026.xhtml#aid-OPEK1
part0026.xhtml#aid-OPEK1
part0028.xhtml#aid-QMFO2
part0098.xhtml#aid-2TEN42
part0099.xhtml#aid-2UD7M2

URL / Django settings for the mytweets project
references / Django settings for the mytweets project
defining / Django settings for the mytweets project

Document-object Mapper
about / The single-page application project – URL shortener

Document Object Model (DOM) / What has changed in web development
DoubleClick

about / MongoDB

E

Easticsearch index
creating / Creating an Elasticsearch index
feeding, with data / Feeding the index with data
search results, retrieving from / Retrieving search results from the index

EC2
about / EC2

Elasticsearch
about / What's the difference between open source and other
software?

Elasticsearch (ES)
about / Django search with Elasticsearch
URL / Django search with Elasticsearch
installing / Installing an Elasticsearch server
communication, with Django / Communication between Elasticsearch
and Django

EMAIL / Changing configuration variables
error() function

about / Logging
error pages

setting / Setting error pages
event handler

about / Handling events

F

$() function
about / Element selectors

fields, MongoDB
BinaryField / Storing sessions
BooleanField / Storing sessions
DateTimeField / Storing sessions
ComplexDateTimeField / Storing sessions
DecimalField / Storing sessions
DictField / Storing sessions

part0040.xhtml#aid-164MG2
part0040.xhtml#aid-164MG2
part0040.xhtml#aid-164MG2
part0081.xhtml#aid-2D7TI2
part0015.xhtml#aid-E9OE1
part0079.xhtml#aid-2BASE1
part0099.xhtml#aid-2UD7M2
part0099.xhtml#aid-2UD7M2
part0099.xhtml#aid-2UD7M2
part0096.xhtml#aid-2RHM02
part0083.xhtml#aid-2F4UM1
part0083.xhtml#aid-2F4UM1
part0099.xhtml#aid-2UD7M2
part0099.xhtml#aid-2UD7M2
part0099.xhtml#aid-2UD7M2
part0099.xhtml#aid-2UD7M2
part0099.xhtml#aid-2UD7M2
part0094.xhtml#aid-2PKKS1
part0087.xhtml#aid-2IV0U2
part0095.xhtml#aid-2QJ5E1
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2

DynamicField / Storing sessions
EmailField / Storing sessions
FileField / Storing sessions
FloatField / Storing sessions
GeoPointField / Storing sessions
ImageField / Storing sessions
IntField / Storing sessions
ListField / Storing sessions
MapField / Storing sessions
ObjectIdField / Storing sessions
StringField / Storing sessions
URLField / Storing sessions
reference link / Storing sessions

field types
IntegerField / Familiarization with the Django models, Designing the
tweet post form
TextField / Familiarization with the Django models
DateTimeField / Familiarization with the Django models, Designing the
tweet post form
EmailField / Familiarization with the Django models, Designing the
tweet post form
URLField / Familiarization with the Django models, Designing the tweet
post form
FileField / Familiarization with the Django models
CharField / Designing the tweet post form
DateField / Designing the tweet post form

filter
about / Logging

flatpages
about / Flatpages
humanize application / Humanize
sitemap / Sitemap
cross-site request forgery (CSRF) protection / Cross-site request forgery
protection

follower
adding / Adding or removing the follower
removing / Adding or removing the follower

formatter
about / Logging

form widgets
PasswordInput / Designing the tweet post form
HiddenInput / Designing the tweet post form
Textarea / Designing the tweet post form
FileInput / Designing the tweet post form

part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0041.xhtml#aid-173721
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0041.xhtml#aid-173721
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0041.xhtml#aid-173721
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0041.xhtml#aid-173721
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0087.xhtml#aid-2IV0U2
part0074.xhtml#aid-26I9K1
part0074.xhtml#aid-26I9K1
part0074.xhtml#aid-26I9K1
part0074.xhtml#aid-26I9K1
part0074.xhtml#aid-26I9K1
part0056.xhtml#aid-1LCVG2
part0056.xhtml#aid-1LCVG2
part0087.xhtml#aid-2IV0U2
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2

Foundation / What has changed in web development
function-based view

defining / Introduction to class-based views

G

$git branch
about / Branching in Git

$git checkout <old-branch-name> command
about / Branching in Git

$git merge <branch-name> command
about / Branching in Git

.gitignore file
about / Django settings for the mytweets project

generic views
about / Class-based generic views

Git
about / Git – the latest and most popular version control tool
URL / Git – the latest and most popular version control tool
working / How Git works
setting up / Setting up your Git
branching in / Branching in Git

git checkout -b <new-branch-name>
about / Branching in Git

GitHub / Setting up your Git
GNU gettext

about / Creating translation files
URL / Creating translation files

Google Compute Engine
about / Google Compute Engine

group permissions

about / Group permissions

H

404.html / Setting error pages
500.html / Setting error pages
handlers

about / Logging
hashtag data model

about / The hashtag data model
Django forms / Django forms

hashtags
autocompletion, implementing / Autocompletion of hashtags while
submitting a tweet

part0015.xhtml#aid-E9OE1
part0039.xhtml#aid-1565U1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0040.xhtml#aid-164MG2
part0072.xhtml#aid-24L8G1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0029.xhtml#aid-RL0A1
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0096.xhtml#aid-2RHM02
part0062.xhtml#aid-1R42S1
part0095.xhtml#aid-2QJ5E1
part0095.xhtml#aid-2QJ5E1
part0087.xhtml#aid-2IV0U2
part0044.xhtml#aid-19UOO2
part0044.xhtml#aid-19UOO2
part0054.xhtml#aid-1JFUC2
part0054.xhtml#aid-1JFUC2

Heroku
about / Minimal Bootstrap, Heroku
URL / Heroku

Heroku Toolbelt
about / Heroku

humanize application

about / Humanize
apnumber filter / Humanize
intcomma filter / Humanize
intword filter / Humanize
naturalday filter / Humanize
naturaltime filter / Humanize
ordinal filter / Humanize

I

IAS (Infrastructure As a Service) / Django on cloud
IDE

using / Using IDE for faster development
imported packages, grouping

standard library imports / Grouping imported packages
related third party imports / Grouping imported packages
local application / library-specific imports / Grouping imported packages

improvements, web development
JavaScript / What has changed in web development
browsers / What has changed in web development
open source / What has changed in web development
API as spinal cord / What has changed in web development
User Interface design / What has changed in web development
Agile development / What has changed in web development
evolution of cloud computing / What has changed in web development
birth of NoSQL / What has changed in web development

in-place editing
implementing / Editing a tweet in place without loading a separate page
about / Editing a tweet in place without loading a separate page
bookmark editing, implementing / Implementing bookmark editing
implementing, of bookmarks / Implementing in-place editing of
bookmarks

indentation, in Python
about / Understanding indentation in Python
recommendations / Doing indentation right – do we need four spaces
per indentation level?
importance, of blank lines / The importance of blank lines

Index class / Storing sessions
info() function

part0032.xhtml#aid-UGI01
part0096.xhtml#aid-2RHM02
part0096.xhtml#aid-2RHM02
part0096.xhtml#aid-2RHM02
part0074.xhtml#aid-26I9K1
part0074.xhtml#aid-26I9K1
part0074.xhtml#aid-26I9K1
part0074.xhtml#aid-26I9K1
part0074.xhtml#aid-26I9K1
part0074.xhtml#aid-26I9K1
part0074.xhtml#aid-26I9K1
part0096.xhtml#aid-2RHM02
part0025.xhtml#aid-NQU21
part0024.xhtml#aid-MSDG2
part0024.xhtml#aid-MSDG2
part0024.xhtml#aid-MSDG2
part0015.xhtml#aid-E9OE1
part0015.xhtml#aid-E9OE1
part0015.xhtml#aid-E9OE1
part0015.xhtml#aid-E9OE1
part0015.xhtml#aid-E9OE1
part0015.xhtml#aid-E9OE1
part0015.xhtml#aid-E9OE1
part0015.xhtml#aid-E9OE1
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0053.xhtml#aid-1IHDQ2
part0024.xhtml#aid-MSDG2
part0024.xhtml#aid-MSDG2
part0024.xhtml#aid-MSDG2
part0024.xhtml#aid-MSDG2
part0081.xhtml#aid-2D7TI2

about / Logging
initial database schema

designing / Models – designing an initial database schema
user objects, Django / Django's user objects
URL, creating / Creating a URL
template, creating for Main Page / Templates – creating a template for
the Main Page

installation
Python / Installing the required software
virtualenv / Installing virtualenv
Django / Installing Django
database system / Installing a database system

internationalization (i18n)
for multiple language support / Internationalization (i18n) – offering the
site in multiple languages
strings, specifying for translation / Marking strings as translatable
translation files, creating / Creating translation files
enabling / Enabling and configuring the i18n system
configuring / Enabling and configuring the i18n system

invitation e-mails
sending / Sending invitation e-mails to friends
invitation data model, creating / The invitation data model
activation links, handling / Handling activation links

Ipdb

about / IPDB – interactive way of busting bugs
installing / IPDB – interactive way of busting bugs
shortcuts / IPDB – interactive way of busting bugs

J

jQuery / What has changed in web development
URL / Templates – creating a template for the Main Page
about / Using an AJAX framework in Django

jQuery framework
using / Using the open source jQuery framework
about / The jQuery JavaScript framework
elements, selecting / Element selectors
methods, using / jQuery methods
elements, hiding / Hiding and showing elements
elements, showing / Hiding and showing elements
CSS properties, accessing / Accessing CSS properties and HTML
attributes
HTML attributes, accessing / Accessing CSS properties and HTML
attributes
HTML documents, manipulating / Manipulating HTML documents

part0087.xhtml#aid-2IV0U2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0066.xhtml#aid-1UU542
part0065.xhtml#aid-1TVKI2
part0065.xhtml#aid-1TVKI2
part0065.xhtml#aid-1TVKI2
part0089.xhtml#aid-2KS221
part0089.xhtml#aid-2KS221
part0089.xhtml#aid-2KS221
part0015.xhtml#aid-E9OE1
part0042.xhtml#aid-181NK2
part0049.xhtml#aid-1ENBI1
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42

document tree, traversing / Traversing the document tree
events, handling / Handling events
AJAX requests, sending / Sending AJAX requests
reference link / What next?

jQuery plugins
reference link / Autocompletion of hashtags while submitting a tweet

JSON API

implementing / Implementing a simple JSON API

L

Link class / Storing sessions
Linux

MySQL, installing in / Installing MySQL in Linux – Debian
listing pages

customizing / Customizing listing pages
list of fields

URL / Familiarization with the Django models
live search, of tweets

implementing / Implementing the live searching of tweets
logger

about / Logging
logging

about / Logging
using / Logging
debug() function / Logging
info() function / Logging
warning() function / Logging
error() function / Logging
critical() function / Logging
URL, for documentation / Logging
example / Logging

logging module
logger / Logging
handlers / Logging
filter / Logging
formatter / Logging

log record

about / Logging

M

Mac OS X
Python installing / Installing Python on Mac OS X
Django, installing / Installing Django on Unix/Linux and Mac OS X

part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0050.xhtml#aid-1FLS42
part0054.xhtml#aid-1JFUC2
part0085.xhtml#aid-2H1VQ1
part0081.xhtml#aid-2D7TI2
part0080.xhtml#aid-2C9D02
part0060.xhtml#aid-1P71O2
part0041.xhtml#aid-173721
part0052.xhtml#aid-1HIT82
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0087.xhtml#aid-2IV0U2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2

Main Page
creating / URLs and views – creating the main page
template, creating for / Templates – creating a template for the Main
Page

many-to-many relationship
about / The hashtag data model

many-to-many relationships / Many-to-many relationships
many-to-one relationships / Many-to-one relationships
mappings

about / Creating an Elasticsearch index
message system

implementing / The message system
migration

about / Migration and the need for migration, The new features in
Django migration
need for / Migration and the need for migration
performing / How to do migrations?
commands / How to do migrations?
working / How migrations know what to migrate

migration, Django
new features / The new features in Django migration
advantages / The new features in Django migration

migration class
dependencies / The migration file
operations / The migration file

migration file
about / The migration file

mixins
about / Introduction to class-based views

Modal Class / Object-relational mapper
model, migration operation

CreateModel / The migration file
DeleteModel / The migration file
RenameModel / The migration file
AlterModelTable / The migration file
AlterUniqueTogether / The migration file
AlteIndexTogether / The migration file
AddField / The migration file
RemoveField / The migration file
RenameField / The migration file

Model-View-Controller (MVC) web framework / The MVC pattern in web
development
Model Template View (MTV) framework

about / A word about Django terminology

part0038.xhtml#aid-147LC1
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0044.xhtml#aid-19UOO2
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721
part0099.xhtml#aid-2UD7M2
part0075.xhtml#aid-27GQ61
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0039.xhtml#aid-1565U1
part0017.xhtml#aid-G6PI1
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0034.xhtml#aid-10DJ41

mod_wsgi parameter / The production web server
mongoDB / Tight integration between the component and modular
framework
MongoDB

about / Supported databases, MongoDB, Django with NoSQL
benefits / MongoDB
strengths / MongoDB
URL, for installing / Django with NoSQL
connecting, with Django / Connecting MongoDB with Django

MongoEngine
about / The single-page application project – URL shortener,
MongoEngine

most followed user
displaying / Displaying the most followed user

MS SQL Server / Installing a database system
multilingual support / Multilingual support
MySQL / Installing a database system

benefits / MySQL – open source
setting up / Setting up MySQL
installing, in Linux / Installing MySQL in Linux – Debian
about / Backend support

MySQL plugin

installing, for Python / Installing the MySQL plugin for Python

N

naming convention, Python/Django
about / Naming conventions in Python/Django

ng-app directive / AngularJS meets Django
ng-directives / AngularJS meets Django
ng-model directive / AngularJS meets Django
node.js / What has changed in web development
NoSQL

about / Supported databases
versus SQL / SQL versus NoSQL

NoSQL databases

about / NoSQL databases
MongoDB / MongoDB
CouchDB / CouchDB
Redis / Redis

O

OAuth
about / How OAuth works

part0091.xhtml#aid-2MP362
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0018.xhtml#aid-H5A41
part0079.xhtml#aid-2BASE1
part0080.xhtml#aid-2C9D02
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0080.xhtml#aid-2C9D02
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0081.xhtml#aid-2D7TI2
part0057.xhtml#aid-1MBG21
part0021.xhtml#aid-K0RQ2
part0016.xhtml#aid-F8901
part0021.xhtml#aid-K0RQ2
part0079.xhtml#aid-2BASE1
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0080.xhtml#aid-2C9D02
part0024.xhtml#aid-MSDG2
part0098.xhtml#aid-2TEN42
part0098.xhtml#aid-2TEN42
part0098.xhtml#aid-2TEN42
part0015.xhtml#aid-E9OE1
part0018.xhtml#aid-H5A41
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0084.xhtml#aid-2G3F82

Object-Relational Mapper (ORM)
about / Familiarization with the Django models

offline access
about / How OAuth works

one-to-many relationship
about / The hashtag data model

one-to-one relationships / One-to-one relationships
OpenID / Tight integration between the component and modular framework
OpenShift

about / The open hybrid cloud application platform by Red Hat
URL / The open hybrid cloud application platform by Red Hat

open source
about / Diving into the world of open source

Open Source Initiative
about / What's the difference between open source and other
software?

open source software
about / What is an open source software?
versus other software / What's the difference between open source and
other software?

operators
exact / Implementing a searching
contains / Implementing a searching
startswith / Implementing a searching
lt / Implementing a searching
gt / Implementing a searching

Oracle / Installing a database system

P

pages
rendering / Introduction to class-based views

pagination
about / Organizing content into pages – pagination

panels, Django debug toolbar
VersionPath / Installing the Django debug toolbar
TimerPath / Installing the Django debug toolbar
SettingsPath / Installing the Django debug toolbar
Path / Installing the Django debug toolbar
Request Path / Installing the Django debug toolbar
Static files Path / Installing the Django debug toolbar
Template Path / Installing the Django debug toolbar
Cache Path / Installing the Django debug toolbar
Signal Path / Installing the Django debug toolbar
Logging Path / Installing the Django debug toolbar

part0041.xhtml#aid-173721
part0084.xhtml#aid-2G3F82
part0044.xhtml#aid-19UOO2
part0041.xhtml#aid-173721
part0017.xhtml#aid-G6PI1
part0096.xhtml#aid-2RHM02
part0096.xhtml#aid-2RHM02
part0083.xhtml#aid-2F4UM1
part0083.xhtml#aid-2F4UM1
part0083.xhtml#aid-2F4UM1
part0083.xhtml#aid-2F4UM1
part0083.xhtml#aid-2F4UM1
part0083.xhtml#aid-2F4UM1
part0051.xhtml#aid-1GKCM2
part0051.xhtml#aid-1GKCM2
part0051.xhtml#aid-1GKCM2
part0051.xhtml#aid-1GKCM2
part0051.xhtml#aid-1GKCM2
part0021.xhtml#aid-K0RQ2
part0039.xhtml#aid-1565U1
part0063.xhtml#aid-1S2JE2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2
part0088.xhtml#aid-2JTHG2

Redirects Path / Installing the Django debug toolbar
parameters, field type

label / Designing the tweet post form
required / Designing the tweet post form
widget / Designing the tweet post form
help_text / Designing the tweet post form

partials
about / Implementing a searching

Perl / Understanding indentation in Python
permissions

about / Users, groups, and permissions
user permissions / User permissions
group permissions / Group permissions
using, in views / Using permissions in views

Pinterest / Django is mature
about / Supported databases

Platform as a Service (PaaS) / Django on cloud
Poedit

URL / Creating translation files
PostgreSQL

about / Supported databases, PostgreSQL, Backend support
/ Installing a database system
Powershell / Installing virtualenv
production database

about / The production database
production web server

using / The production web server, The production web server
project

about / The Django project structure
project structure

about / The Django project structure
django_mytweets / The Django project structure
manage.py / The Django project structure
settings.py / The Django project structure
url.py / The Django project structure

proprietary software
about / What's the difference between open source and other
software?

Prototype
about / Using an AJAX framework in Django

PyCharm
about / Using IDE for faster development

pycharm IDE
setting up / Setting up the PyCharm IDE

part0088.xhtml#aid-2JTHG2
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0045.xhtml#aid-1AT9A2
part0051.xhtml#aid-1GKCM2
part0024.xhtml#aid-MSDG2
part0062.xhtml#aid-1R42S1
part0062.xhtml#aid-1R42S1
part0062.xhtml#aid-1R42S1
part0062.xhtml#aid-1R42S1
part0017.xhtml#aid-G6PI1
part0018.xhtml#aid-H5A41
part0096.xhtml#aid-2RHM02
part0066.xhtml#aid-1UU542
part0018.xhtml#aid-H5A41
part0079.xhtml#aid-2BASE1
part0080.xhtml#aid-2C9D02
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0092.xhtml#aid-2NNJO1
part0069.xhtml#aid-21PMQ1
part0091.xhtml#aid-2MP362
part0028.xhtml#aid-QMFO2
part0028.xhtml#aid-QMFO2
part0028.xhtml#aid-QMFO2
part0028.xhtml#aid-QMFO2
part0028.xhtml#aid-QMFO2
part0028.xhtml#aid-QMFO2
part0083.xhtml#aid-2F4UM1
part0083.xhtml#aid-2F4UM1
part0049.xhtml#aid-1ENBI1
part0025.xhtml#aid-NQU21
part0027.xhtml#aid-PNV61

Python / The MVC pattern in web development
download link / Installing Python on Windows
MySQL plugin, installing for / Installing the MySQL plugin for Python

Python-Social-Auth
about / Implementing social OAuth

Python installation
about / Installing Python
on Windows / Installing Python on Windows
on Unix/Linux / Installing Python on Unix/Linux
on Mac OS X / Installing Python on Mac OS X

Python module, for SQLite

URL / Installing a database system

Q

Quora / Django is mature

about / Supported databases

R

Red Hat
about / What's the difference between open source and other
software?, The open hybrid cloud application platform by Red Hat

Redis
about / Redis
benefits / Redis
strengths / Redis

registration view
testing / Testing the registration view

regular expression syntax
about / Creating a URL
. (Dot) / Creating a URL
^ (Caret) / Creating a URL
$ / Creating a URL
* / Creating a URL
+ / Creating a URL
? / Creating a URL
| / Creating a URL
[a-z] / Creating a URL
\w / Creating a URL
\d / Creating a URL

relationship types, model
many-to-one relationships / Many-to-one relationships
one-to-one relationships / One-to-one relationships
many-to-many relationships / Many-to-many relationships

part0016.xhtml#aid-F8901
part0021.xhtml#aid-K0RQ2
part0080.xhtml#aid-2C9D02
part0084.xhtml#aid-2G3F82
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0017.xhtml#aid-G6PI1
part0018.xhtml#aid-H5A41
part0083.xhtml#aid-2F4UM1
part0083.xhtml#aid-2F4UM1
part0096.xhtml#aid-2RHM02
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0068.xhtml#aid-20R682
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0042.xhtml#aid-181NK2
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721

re module
URL / Creating a URL

replication
about / MySQL – open source

Representational State Transfer (REST)
about / Building REST APIs in Django

REST APIs

building / Building REST APIs in Django
building, Tastypie used / Using Django Tastypie

S

schema migration / Migration and the need for migration
search, of tweets

implementing / Implementing the searching of tweets, Implementing a
searching

SECRET_KEY / Changing configuration variables
ServerAdmin parameter / The production web server
ServerAlias parameter / The production web server
ServerName parameter / The production web server
sessions

storing / Storing sessions
setlanguage

about / Enabling and configuring the i18n system
sharding

about / MySQL – open source
single-page application project

about / The single-page application project – URL shortener
sitemap

about / Sitemap
Social Auth

about / Using SocialAuth in Django projects
using / Using SocialAuth in Django projects
OAuth / How OAuth works
Twitter application, creating / Creating a Twitter application

SocialAuth / Tight integration between the component and modular
framework
social OAuth

implementing / Implementing social OAuth
South / Migration and the need for migration
SQL

about / Supported databases
versus NoSQL / SQL versus NoSQL

SQL databases
about / SQL databases

part0042.xhtml#aid-181NK2
part0079.xhtml#aid-2BASE1
part0085.xhtml#aid-2H1VQ1
part0085.xhtml#aid-2H1VQ1
part0085.xhtml#aid-2H1VQ1
part0080.xhtml#aid-2C9D02
part0051.xhtml#aid-1GKCM2
part0051.xhtml#aid-1GKCM2
part0051.xhtml#aid-1GKCM2
part0094.xhtml#aid-2PKKS1
part0091.xhtml#aid-2MP362
part0091.xhtml#aid-2MP362
part0091.xhtml#aid-2MP362
part0081.xhtml#aid-2D7TI2
part0066.xhtml#aid-1UU542
part0079.xhtml#aid-2BASE1
part0081.xhtml#aid-2D7TI2
part0074.xhtml#aid-26I9K1
part0084.xhtml#aid-2G3F82
part0084.xhtml#aid-2G3F82
part0084.xhtml#aid-2G3F82
part0084.xhtml#aid-2G3F82
part0017.xhtml#aid-G6PI1
part0017.xhtml#aid-G6PI1
part0084.xhtml#aid-2G3F82
part0080.xhtml#aid-2C9D02
part0018.xhtml#aid-H5A41
part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1

MySQL / MySQL – open source
PostgreSQL / PostgreSQL

SQLite
about / Supported databases, Backend support

/ Installing a database system
SSH keys

URL / Creating Django's template structure of the project
staging area / Setting up your Git
Store Anything Together / What has changed in web development
Store it Now find The Value Later / What has changed in web development
Sublime CodeIntel / Setting up your project with the Sublime text editor
Sublime Linter / Setting up your project with the Sublime text editor
SublimeText

about / Using IDE for faster development
URL / Using IDE for faster development

subscription system
implementing / The subscription system

supported databases
about / Supported databases
SQL / Supported databases
SQLite / Supported databases
PostgreSQL / Supported databases
NoSQL / Supported databases
MongoDB / Supported databases

Synaptic Package Manager / Installing Python on Unix/Linux

T

tag page
creating / Creating a tag page

Tastypie
about / Building REST APIs in Django
used, for building REST APIs / Using Django Tastypie
JSON API, implementing / Implementing a simple JSON API

/ AngularJS meets Django
template

about / A word about Django terminology
template application

setting up / Setting up a basic template application
virtual environment, creating / Creating a virtual environment, Installing
Django
project structure, creating / Creating Django's template structure of the
project

templatetags
about / Custom template tags and filters

part0079.xhtml#aid-2BASE1
part0079.xhtml#aid-2BASE1
part0018.xhtml#aid-H5A41
part0080.xhtml#aid-2C9D02
part0021.xhtml#aid-K0RQ2
part0036.xhtml#aid-12AK82
part0029.xhtml#aid-RL0A1
part0015.xhtml#aid-E9OE1
part0015.xhtml#aid-E9OE1
part0026.xhtml#aid-OPEK1
part0026.xhtml#aid-OPEK1
part0025.xhtml#aid-NQU21
part0025.xhtml#aid-NQU21
part0076.xhtml#aid-28FAO1
part0018.xhtml#aid-H5A41
part0018.xhtml#aid-H5A41
part0018.xhtml#aid-H5A41
part0018.xhtml#aid-H5A41
part0018.xhtml#aid-H5A41
part0018.xhtml#aid-H5A41
part0021.xhtml#aid-K0RQ2
part0046.xhtml#aid-1BRPS1
part0085.xhtml#aid-2H1VQ1
part0085.xhtml#aid-2H1VQ1
part0085.xhtml#aid-2H1VQ1
part0098.xhtml#aid-2TEN42
part0034.xhtml#aid-10DJ41
part0035.xhtml#aid-11C3M1
part0035.xhtml#aid-11C3M1
part0036.xhtml#aid-12AK82
part0036.xhtml#aid-12AK82
part0036.xhtml#aid-12AK82
part0036.xhtml#aid-12AK82
part0071.xhtml#aid-23MNU1

translation files
creating / Creating translation files

tweet post form
designing / Designing the tweet post form

Twitter
URL / Creating a Twitter application

Twitter application
creating / Creating a Twitter application

Twitter bootstrap
setting up, for application / Setting up the basic Twitter Bootstrap for
the application

typeahead JavaScript library

about / Implementing the live searching of tweets
URL / Implementing the live searching of tweets

U

Ubuntu / Installing Python on Unix/Linux
unit testing

performing / Unit testing – automating the process of testing your
application
test client / The test client
registration view, testing / Testing the registration view

Unix/Linux
Python installing / Installing Python on Unix/Linux
Django, installing / Installing Django on Unix/Linux and Mac OS X

URLs
defining / URLs and views – creating the main page

UserFollowers data model
creating / The UserFollowers data model

user interface (UI) elements / The MVC pattern in web development
user login model

about / The user login model
user objects, Django / Django's user objects
User Pages

generating / Putting it all together – generating user pages
Django models, defining / Familiarization with the Django models
relationship types / Relationships in models

user permissions
about / User permissions

users
letting follow another user / Letting users follow another user

user scores

implementing / User scores

part0066.xhtml#aid-1UU542
part0045.xhtml#aid-1AT9A2
part0084.xhtml#aid-2G3F82
part0084.xhtml#aid-2G3F82
part0037.xhtml#aid-1394Q2
part0037.xhtml#aid-1394Q2
part0052.xhtml#aid-1HIT82
part0052.xhtml#aid-1HIT82
part0021.xhtml#aid-K0RQ2
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0068.xhtml#aid-20R682
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0038.xhtml#aid-147LC1
part0056.xhtml#aid-1LCVG2
part0016.xhtml#aid-F8901
part0056.xhtml#aid-1LCVG2
part0042.xhtml#aid-181NK2
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721
part0041.xhtml#aid-173721
part0062.xhtml#aid-1R42S1
part0056.xhtml#aid-1LCVG2
part0077.xhtml#aid-29DRA1

V

version control
using / Best practices – using version control

view
about / A word about Django terminology

views
defining / URLs and views – creating the main page

virtualenv
installing / Installing virtualenv
about / Installing virtualenv
URL, for online documentation / Installing virtualenv
script, activating / Installing virtualenv
script, deactivating / Installing virtualenv

virtual environment

creating / Creating a virtual environment, Installing Django

W

warning() function
about / Logging

web development
about / Why web development in the first place?
improvements / What has changed in web development
MVC pattern / The MVC pattern in web development
multilingual support / Multilingual support

Web Server Gateway Interface (WSGI)
about / The production web server

Windows
Python installing / Installing Python on Windows
Django, installing / Installing Django on Windows

wire-framing
about / Minimal Bootstrap

WSGIScriptAlias parameter / The production web server

Y

Yahoo! UI Library

about / Using an AJAX framework in Django

Z

7-Zip

URL / Installing Django on Windows

part0029.xhtml#aid-RL0A1
part0034.xhtml#aid-10DJ41
part0038.xhtml#aid-147LC1
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0035.xhtml#aid-11C3M1
part0036.xhtml#aid-12AK82
part0087.xhtml#aid-2IV0U2
part0014.xhtml#aid-DB7S1
part0015.xhtml#aid-E9OE1
part0016.xhtml#aid-F8901
part0016.xhtml#aid-F8901
part0091.xhtml#aid-2MP362
part0021.xhtml#aid-K0RQ2
part0021.xhtml#aid-K0RQ2
part0032.xhtml#aid-UGI01
part0091.xhtml#aid-2MP362
part0049.xhtml#aid-1ENBI1
part0021.xhtml#aid-K0RQ2

