Tutorial de PostgreSQL

Publicacion 8.4

Luis Felipe Lopez Acevedo

06 de September de 2014

Indice general

1. Contenido 3
1.1. Parte : Primero lo primero o 0 i i e e e e e e e e e e e e 3
1.2. Parte Il: El lenguaje SQL e e e e e e 8
1.3. Parte III: Caracteristicas avanzadas v i v i v it et et e e e e e 15
1.4, Créditos. o i e e e e e e e e e e 22
1.5, Licencia e e e 22

Tutorial de PostgreSQL, Publicacion 8.4

Bienvenido/a al Tutorial de PostgreSQL. Las siguientes paginas tienen como propdsito dar una introduccién senci-
lla sobre PostgreSQL, conceptos de bases de datos relacionales y el lenguaje SQL a aquellas personas nuevas en
cualquiera de estos temas. Se requiere experiencia basica en sistemas GNU/Linux. Esta documentacién le dard cierta
experiencia practica con aspectos importantes del sistema PostgreSQL. No se pretende dar un tratamiento exhaustivo
de los temas que se tratan.

Después de haber trabajado este tutorial, tal vez quiera leer la Parte II del manual de PostgreSQL para obtener un co-
nocimiento mas formal del lenguaje SQL, o la Parte IV para obtener informacién sobre como desarrollar aplicaciones
que usan PostgreSQL. Aquellos que configuran y administran su propio servidor, deberian leer también la Parte III.

Nota: Este tutorial estd dirigido a usuarios de Sistemas operativos libres basados en Ubuntu, algunas de las instruc-
ciones especificadas aqui podrian no funcionar en otras distribuciones.

Visite el sitio Web del tutorial para obtener la dltima version.

indice general 1

http://www.postgresql.org/docs/8.4/interactive/sql.html
http://www.postgresql.org/docs/8.4/interactive/client-interfaces.html
http://www.postgresql.org/docs/8.4/interactive/admin.html
http://www.gnu.org/distros/free-distros.es.html
http://sirgazil.bitbucket.org/artifacts/pgsql-tutorial/

Tutorial de PostgreSQL, Publicacion 8.4

2 indice general

CcAPiTULO 1

Contenido

1.1

Parte I: Primero lo primero

1.1.1 Introduccion

PostgreSQL es un sistema de administracién de bases de datos relacionales orientadas a objetos (ORDBMS, object-
relational database management system) basado en POSTGRES, Version 4.2, desarrollado en el Departamento de
Ciencias Computacionales de la Universidad de California, Berkeley. POSTGRES fue pionero en muchos conceptos
que solo llegaron a aparecer en algunos sistemas de bases de datos comerciales mucho tiempo después. PostgreSQL
es un descendiente de c6digo abierto del cédigo original de Berkeley.

Caracteristicas

Bases de datos de nivel empresarial.

Multiplataforma: corre en los sistemas operativos mds populares, incluyendo GNU/Linux, UNIX (AIX, BSD,
HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64) y Windows.

Altamente escalable tanto en la cantidad de datos que puede administrar como en el nimero de usuarios con-
currentes que puede manejar. Existen sistemas PostgreSQL en ambientes de produccién que manejan més de 4
terabytes de datos '

Cumplimiento completo de ACID (atomicity, consistency, isolation, durability).
Claves foraneas (foreign keys).

Uniones (joins).

Vistas (views).

Disparadores (triggers).

Procedimientos almacenados (en diferentes lenguajes).

Incluye la mayoria de tipos de datos de SQL:2008, como INTEGER, NUMERIC, BOOLEAN, CHAR, VAR-
CHAR, DATE, INTERVAL y TIMESTAMP.

Almacenamiento de objetos binarios grandes, incluyendo imagenes, sonido y video.

Disponibilidad de interfaces de programacion nativas para C/C++, Java, .Net, Perl, Python, Ruby, Tcl, ODBC,
entre otros.

Documentacion excepcional.

! Usuarios destacados. PostgreSQL.org.. The PostgreSQL Global Development Group, 2011.

http://s2k-ftp.cs.berkeley.edu:8000/postgres/postgres.html
http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/about/users/

Tutorial de PostgreSQL, Publicacion 8.4

= Multi-Version Concurrency Control (MVCC).

= Point in Time Recovery (PITR).

= Tablespaces.

= Replicacién asincrénica.

= Transacciones anidadas (savepoints).

= Copias de respaldo en linea o en caliente (Online/hot backups).
= Optimizador/Planificador de consultas sofisticado.

= Conjuntos de caracteres internacionales.

= Unicode.

Y por su licencia libre, cualquier persona puede usar, modificar y distribuir PostgreSQL de manera libre y gratuita
para cualquier propdsito, sea privado, comercial o académico.

Limites generales de PostgreSQL

Limite Valor

Tamafio maximo de base de datos | Ilimitado

Tamafio mdximo de tabla 32TB

Tamafo maximo de fila 1,6 TB

Tamafio mdximo de campo 1 GB

Maximo de filas por tabla Mlimitado

Maiximo de columnas por tabla 250 - 1600 (dependiendo del tipo de columnas)
Maiximo de indices por tabla [limitado

Arquitectura

Antes de empezar, es necesario comprender la arquitectura basica del sistema PostgreSQL. Entender como interactian
las partes de PostgreSQL hard que las siguientes paginas sean mds faciles de entender.

En la jerga de bases de datos, PostgreSQL usa un modelo cliente/servidor. Una sesién de PostgreSQL se compone de
los siguientes procesos cooperativos (programas):

= El servidor, que administra los archivos de las bases de datos, acepta conexiones a las bases de datos de parte
de aplicaciones clientes y ejecuta acciones sobre las bases de datos en representacion de ellos. El programa
servidor de bases de datos se llama postgres.

= La aplicacion cliente (frontend) que desea ejecutar operaciones en las bases de datos. Las aplicaciones cliente
pueden ser muy diversas por naturaleza: podria ser una herramienta con interfaz de texto, una aplicacién grafica,
un servidor Web que accede a las bases de datos para mostrar paginas Web, o una herramienta especializada
para el mantenimiento de bases de datos. La distribuciéon de PostgreSQL viene con algunas aplicaciones cliente;
la mayoria es desarrollada por usuarios.

Como es tipico en las aplicaciones cliente/servidor, el cliente y el servidor pueden estar en diferentes maquinas. En tal
caso, ambos se comunican por medio de una conexién de red TCP/IP. Esto debe tenerse presente porque los archivos
a los que se puede acceder desde una maquina cliente podrian no ser accesibles para la maquina con el servidor de
bases de datos.

El servidor de PostgreSQL puede manejar muchas conexiones concurrentes de diferentes clientes. Para lograrlo, inicia
(“ramifica”) un proceso nuevo para cada conexidn. A partir de ese punto, el cliente y el nuevo proceso del servidor se

4 Capitulo 1. Contenido

Tutorial de PostgreSQL, Publicacion 8.4

comunican sin la intervencion del proceso original de postgres. De esta manera, el proceso maestro del servidor siem-
pre esté corriendo, esperando conexiones de clientes, mientras que los clientes y sus procesos de servidor asociados
vienen y van. (Todo esto, claro estd, es invisible para el usuario. Solo se menciona aqui para propésitos ilustrativos).

Notas

1.1.2 Instalacion

Abra un terminal y ejecute la siguiente orden:
$ sudo apt—-get install postgresql
Esta orden instalard los paquetes necesarios para tener un sistema de administracién de bases de datos completo, que

inlcuye el servidor postgres, el cliente de linea de érdenes psql y otras herramientas importantes que se describirdn
mds adelante.

Configuracion del usuario postgres

Al instalar PostgreSQL, se crea un usuario del sistema operativo llamado postgres. Adicionalmente, se crea un rol y
una base de datos con el mismo nombre (postgres) en el sistema de bases de datos. En PostgreSQL, el concepto de
rol puede pensarse como un usuario de bases de datos o como un grupo de usuarios de bases de datos. El rol postgres
tiene cualidades de superusuario .

Antes de poder hacer algo productivo, es necesario darle una contrasefia al rol postgres. Para hacerlo, ejecute lo
siguiente en un terminal:

$ sudo -u postgres psql postgres
La orden anterior permite al usuario postgres conectarse a la base de datos del mismo nombre por medio del cliente
psql (conocido como intérprete interactivo de PostgreSQL). Deberia ver algo similar a esto:

$ sudo -u postgres psql postgres
[sudo] password for USUARIO:

psgl (8.4.9)

Digite «help» para obtener ayuda.

postgres=#

Ya dentro de psql, puede ponerle una contrasefia a postgres ejecutando:

postgres=# \password postgres

Escriba la contrasefia y cierre psql presionando Ct r1+D (también puede escribir \ g y luego presionar Enter). Debid
ver algo asi:

postgres=# \password postgres
Ingrese la nueva contrasefa:
Ingrésela nuevamente:
postgres=# \g

Configuracion de su propio usuario

Los pasos de arriba son suficientes para empezar a trabajar con PostgreSQL, pero existe una configuracién adicional
que ahorra mucho tiempo y le hace las cosas mas faciles y agradables a los desarrolladores que tienen instalado el

2 PostgreSQL 8.4.10 Documentation. Chapter 20. Database Roles and Privileges. The PostgreSQL Global Development Group, 2009.

1.1. Parte I: Primero lo primero 5

http://www.postgresql.org/docs/8.4/interactive/user-manag.html

Tutorial de PostgreSQL, Publicacion 8.4

servidor localmente, en su entorno de desarrollo.

Lo que se va a hacer a continuacién es crear un rol con el mismo nombre de su nombre de usuario del sistema operativo
y darle privilegios de superusuario sobre el sistema de PostgreSQL. Esto le permitird usar los programas cliente sin
necesidad de proporcionar un rol y una contrasefia a cada momento.

Ejecute lo siguiente en un terminal:

$ sudo -u postgres createuser —--superuser Sl

La orden anterior, ejecuta la aplicacién createuser con el usuario postgres y crea un superusuario con su nombre de
usuario (la variable SUSER se reemplaza automdaticamente por su nombre de usuario). Si todo sale bien, no deberia
ver nada especial.

Ahora, asignele una contrasefa al usuario que acabé de crear, ejecutando lo siguiente en un terminal:

$ sudo -u postgres psqgl

En psql ejecute lo siguiente, reemplazando la palabra USUARIO por su nombre de usuario actual. (Si no conoce su
nombre de usuario, escriba en otro terminal la orden echo $USER):

postgres=# \password USUARIO

Escriba una contrasefia nueva cuando se la pidan y, finalmente, presione Ct r1+D para salir de psql.

Hecho esto, ahora puede empezar a crear bases de datos, tablas, registros y hacer todo tipo de consultas con SQL. Esto
es lo que aprenderd a hacer en las siguientes paginas.

Notas

1.1.3 Creacion de bases de datos

El servidor de PostgreSQL puede administrar muchas bases de datos. Tipicamente, puede crear una base de datos para
cada uno de sus proyectos.

Para crear una base de datos nueva, en este ejemplo llamada misdatos, ejecute la siguiente orden en un terminal:

$ createdb misdatos

El proceso puede durar unos segundos Yy, si todo sale bien, no deberia ver nada especial.

La orden de arriba es una de las ganancias que trae haber creado un superusuario con su mismo nombre de usuario
de sistema operativo. Si solo existiera el usuario predeterminado postgres, tendria que ejecutar una orden como la
siguiente:

$ sudo -u postgres createdb misdatos

Y de manera similar, con otras érdenes, tendria que especificar siempre el usuario postgres e ingresar la contrasefia.

Puede crear bases de datos con nombres diferentes. PostgreSQL le permite crear cualquier cantidad de bases de datos.
Los nombres de las bases de datos tienen que empezar con una letra del alfabeto y estian limitados a 63 bytes de
longitud.

Una opcién conveniente es crear una base de datos con el mismo nombre de su usuario. Muchas herramientas buscan
predeterminadamente una base de datos con su mismo nombre de usuario cuando no se da un nombre de base de
datos especifico, lo que puede ahorrarle algo de escritura. Cree una base de datos con su mismo nombre de usuario,
simplemente ejecute la siguiente orden en un terminal:

$ createdb

6 Capitulo 1. Contenido

Tutorial de PostgreSQL, Publicacion 8.4

Eliminar una base de datos

Si ya no desea usar alguna de sus bases de datos, puede eliminarla. Por ejemplo, como usted es el duefio (creador) de
la base de datos misdatos, puede destruirla usando la siguiente orden en un terminal:

$ dropdb misdatos

Nota: Lea los manuales.

psql, createuser, createdb 'y dropdb, son algunas de las aplicaciones cliente que vienen con el sistema PostgreSQL. Co-
mo cualquier aplicacién de GNU/Linux, estas también tienen sus propios manuales de uso. Para leerlos, simplemente
escriba en un terminal man app. Por ejemplo:

$ man createdb

(Para salir del manual, presione la tecla Q).

1.1.4 Acceso a bases de datos

Después de haber creado una base de datos, puede acceder a ella de las siguientes formas:

= Ejecutando el terminal interactivo de PostgreSQL, llamado psql, que permite escribir, editar y ejecutar érdenes
de SQL de manera interactiva.

» Usando una herramienta grafica como pgAdmin o un paquete de ofimatica compatible con ODBC o JDBC para
crear y manipular bases de datos. Estas posibilidades no se cubren en este tutorial.

= Escribiendo una aplicacién a la medida, usando cualquiera de los muchos “bindings” disponibles para varios
lenguajes de programacion. Esta posibilidad se discute mds detalladamente en la Parte IV de la documentacién
de PostgreSQL.

Antes de continuar, cree una base de datos nueva llamada midb:

$ createdb midb

Ahora inicie psql para probar los ejemplos de este tutorial. Para indicarle a psql que quiere trabajar en la base de datos
midb, ejecute la siguiente orden en un terminal:

$ psql midb

Si no proporciona el nombre de la base de datos, psql usard la base de datos que tiene por nombre su mismo nombre
de usuario, como se indic6 en Creacion de bases de datos.

En psql verd un mensaje de bienvenida como este:

$ psgl midb
psgl (8.4.9)
Digite «help» para obtener ayuda.

midb=4#

La ultima linea que imprime psql es el “prompt” (midb=#), que indica que psql estd listo para escucharle y que
puede empezar a escribir consultas con SQL. En la siguiente parte de este tutorial empezara a escribir consultas con
SQL. El “prompt” también podria ser midb=>, que indicaria que usted no es superusuario.

psql tiene un conjunto de drdenes internas, también conocidas como metadrdenes, que no son 6rdenes SQL. Todas
ellas empiezan con una barra inversa: “\”. Por ejemplo, puede obtener ayuda sobre la sintaxis de varias érdenes SQL
de PostgreSQL escribiendo:

1.1. Parte I: Primero lo primero 7

http://pgadmin.org/
http://www.postgresql.org/docs/8.4/interactive/client-interfaces.html

Tutorial de PostgreSQL, Publicacion 8.4

midb=# \h

(Presione la tecla Q para salir de la ayuda que se abre).
Puede ver todas las 6rdenes internas de psql escribiendo:

midb=# \?

(Presione la tecla Q para salir de la ayuda que se abre).
Para salir de psql escriba:

midb=# \g

1.2 Parte Il: El lenguaje SQL

1.2.1 Conceptos de SQL

Esta parte del tutorial proporciona un vistazo al uso de SQL con PostgreSQL para ejecutar operaciones sencillas. Los
temas que se tratan son solamente introductorios y de ninguna manera representan un tutorial completo sobre SQL.
Tenga en cuenta que algunas de las caracteristicas del lenguaje de PostgreSQL son extensiones hechas al estandar.

En los ejemplos que siguen, se asume que ya existe una base de datos llamada midb, como se describié en Acceso a
bases de datos.

PostgreSQL es un sistema de administracién de bases de datos relacionales (RDBMS). Significa que es un sistema
para administrar datos guardados en relaciones. Una relacion es esencialmente un término matematico para referirse a
una tabla. La nocién de guardar datos en tablas es tan comun hoy en dia que puede parecer inherentemente obvia, pero
existen otras maneras de organizar las bases de datos. Los archivos y directorios de los sistemas operativos tipo Unix
son un ejemplo de bases de datos jerdrquicas. Un desarrollo mas moderno son las bases de datos orientadas a objetos.

Cada tabla es una coleccidn de filas. Cada fila de una tabla dada tiene el mismo nimero de columnas, cada una de
ellas con un nombre, y cada columna es de un tipo de dato especifico. Aunque las columnas tienen un orden fijo en
cada fila, es importante recordar que SQL no garantiza el orden de las filas dentro de una tabla (aunque si se pueden
organizar explicitamente al mostrarlas).

Las tablas estdn agrupadas en bases de datos y una coleccién de bases de datos administrada por una sola instancia del
servidor de PostgreSQL constituye un “cluster” de bases de datos.

1.2.2 Creacion de tablas

Primero que todo, abra psql especificando la base de datos en la que quiere trabajar:

$ psql midb

Puede crear una tabla nueva especificando el nombre de la tabla junto con los nombres de las columnas y sus tipos:

CREATE TABLE weather (

city varchar (80),

temp_lo int, —-— temperatura baja
temp_hi int, —-— temperatura alta
prcp real, -— precipitacion
date date

8 Capitulo 1. Contenido

Tutorial de PostgreSQL, Publicacion 8.4

La orden de arriba crea una tabla de climas registrados en diferentes ciudades, en diferentes fechas.

Puede escribir lo mismo de arriba en psql con los saltos de linea e indentacion. psql solo ejecutard la orden después
de escribir la linea que termina en punto y coma.

Los espacios en blanco (o sea, espacios, tabulaciones y saltos de linea) se pueden usar libremente en las 6rdenes SQL.
Quiere decir que puede escribir la orden alineada de manera diferente a la de arriba, o incluso todo en una linea. Cree
la tabla weather escribiendo la orden como aparece arriba 0 como aparece a continuacién:

midb=# CREATE TABLE weather (city varchar(80), temp_lo int, temp_hi int, prcp real, date date);

Dos guiones (——) introducen comentarios. Lo que sea que haya después de estos se ignora hasta al final de la linea. SQL
no diferencia entre mayusculas y mindsculas en las palabras clave e identificadores, excepto cuando los identificadores
estdn entre comillas dobles para preservar esa diferenciacién (en el ejemplo de arriba no se hace).

varchar (80) especifica un tipo de dato que puede guardar cadenas de 80 caracteres arbitrarios de largas. int es
el tipo entero comun y corriente. real es un tipo para guardar nimeros de coma flotante de precisién simple. date
es un tipo de dato para almacenar fechas. (En el ejemplo de arriba la columna también se llama “date”. Esto puede ser
conveniente o confuso; usted elige.)

PostgreSQL admite los tipos estindar de SQL int, smallint, real, double precision, char (N),
varchar (N), date, time, timestamp e interval, ademds de otros tipos de uso general y un conjunto espe-
cial de tipos geométricos. PostgreSQL se puede modificar con un nimero arbitrario de tipos de datos definidos por el
usuario. Consecuentemente, los nombres de los tipos de datos no son palabras clave en la sistaxis, excepto en casos
especiales donde se requiera por compatibilidad con el estdndar SQL.

Cree una segunda tabla que guardara ciudades con sus respectivas ubicaciones geograficas:

midb=# CREATE TABLE cities (name varchar (80), location point);

El tipo de dato point es un ejemplo de un tipo de dato especifico de PostgreSQL.

Finalmente, deberia saber que si ya no necesita una tabla o quiere volverla a crear de una manera diferente, puede
eliminarla usando la siguiente orden:

midb=# DROP TABLE nombre_de_la_tabla;

1.2.3 Poblar tablas

La declaracién INSERT se usa para poblar la tabla con filas (también llamadas registros o tuplas).
Inserte una fila nueva en la tabla weather:

midb=# INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Note que todos los tipos de datos usan formatos bastante obvios. Las constantes que no son valores numéricos corrien-
tes normalmente deben ir entre comillas simples (), como se ve arriba. El tipo de dato date es muy flexible en lo que
acepta, pero en este tutorial se usard siempre el formato de fecha usado arriba.

Inserte ahora una fila nueva en la tabla cities. El tipo de dato point requiere pares ordenados como valor:

midb=# INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

La sintaxis usada hasta ahora requiere que uno recuerde el orden de las columnas definidas para cada tabla. Una
sintaxis alternativa permite listar las columnas explicitamente.

Inserte una fila nueva en la tabla weather usando la sintaxis alternativa:

midb=# INSERT INTO weather (city, temp_lo, temp_hi, prcp, date) VALUES (’San Francisco’, 43, 57,

1.2. Parte ll: El lenguaje SQL 9

Tutorial de PostgreSQL, Publicacion 8.4

Puede listar las columnas en un orden diferente o incluso omitir algunas de ellas, si no conoce el valor para una
columna especifica. Por ejemplo, inserte una fila nueva en la tabla weather, donde no se conoce la precipitacion:

midb=# INSERT INTO weather (date, city, temp_hi, temp_lo) VALUES (’1994-11-29’, ’Hayward’, 54,

Muchos desarrolladores consideran que listar las columnas es mejor estilo que depender del orden implicito.

1.2.4 Consultar tablas

Para recuperar datos de una tabla, se hacen consultas. Para esto, se usa la declaracién de SQL SELECT. Esta decla-
racién se divide en una lista de selecciones (la parte que lista las columnas que se van a devolver), una lista de tablas
(la parte que lista las tablas a partir de las cuales se van a recuperar los datos) y una cualidad opcional (la parte que
especifica cualquier restriccion). Por ejemplo, para recuperar todas las filas de la tabla weather, escriba:

midb=# SELECT * FROM weather;

Arriba, * significa “todas las columnas”. Asi que lo siguiente darfa el mismo resultado:

midb=# SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

Advertencia: Evite usar * en produccion.
Aunque SELECT « sirve para hacer consultas rdpidamente, su uso en cédigo de produccién se considera mal
estilo, ya que si se agrega una columna nueva a la tabla el resultado cambiaria.

Al ejecutar cualquiera de las 6rdenes de arriba deberia ver una tabla con 3 filas correspondientes a los datos que generd
en la pagina anterior:

midb=# SELECT % FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— Bt e e it
San Francisco | 16 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 filas)

También puede escribir expresiones en la lista de selecciones, no solamente referencias a las columnas existentes.
Escriba lo siguiente:

midb=# SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

En este caso, se genera una columna nueva en el resultado, con el nombre temp_avg, cuyo valor corresponde al
promedio de temperatura de cada fila:

midb=# SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

city | temp_avg | date
,,,,,,,,,,,,,,, U
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward \ 45 | 1994-11-29
(3 filas)

Se puede agregar “restricciones” a una consulta usando la clausula WHERE que especifica qué tipo de filas se desea
obtener. La cldusula WHERE contiene una expresiéon Booleana y solamente se devuelven las filas para las cuales dicha
expresion sea verdadera. Se permiten los operadores Booleanos usuales (AND, OR y NOT) en la “restriccién”. Por
ejemplo, escriba lo siguiente para obtener climas registrados de San Francisco en dias lluviosos:

10 Capitulo 1. Contenido

37);

Tutorial de PostgreSQL, Publicacion 8.4

midb=# SELECT x FROM weather WHERE city = ’San Francisco’ AND prcp > 0.0;

Resultado:
city | temp_lo | temp_hi | prcp | date
——————————————— R H T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 fila)

Puede pedir también que los resultados de una consulta estén ordenados:

midb=# SELECT * FROM weather ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— e T it
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29

(3 filas)

En el ejemplo anterior, el orden no estd bien especificado del todo, y por eso se obtienen las filas de San Francisco en
cualquier orden. Para organizar no solo por el nombre de la ciudad sino también por la temperatura mas baja:

midb=# SELECT * FROM weather ORDER BY city, temp_lo;

city | temp_lo | temp_hi | prcp | date
——————————————— e
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

(3 filas)

Ademas, puede pedir que no se muestren filas duplicadas en el resultado:

midb=# SELECT DISTINCT city FROM weather;

Hayward
San Francisco
(2 filas)

1.2.5 Uniones entre tablas

Hasta ahora, las consultas que se han visto solamente acceden a una tabla a la vez. Sin embargo, las consultas pueden
acceder a varias tablas al mismo tiempo, o acceder a la misma tabla de tal forma que se procesen varias filas al mismo
tiempo. A las consultas que acceden a varias filas de la misma o de diferentes tablas a la vez se les llama consultas
combinadas. Como ejemplo, digamos que se desea listar todos los registros de climas junto con la ubicacién de las
ciudades asociadas a ellos. Para hacerlo, es necesario comparar la columna city de cada una de las filas de la tabla
weather con la columna name de todas las filas en la tabla cities y seleccionar los pares de filas donde estos
valores concuerden.

Lo anterior se logra de la siguiente manera:

midb=# SELECT » FROM weather, cities WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location

1.2. Parte llI: El lenguaje SQL 11

Tutorial de PostgreSQL, Publicacion 8.4

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(2 filas)

Observe dos cosas sobre el resultado:

= No hay resultado para la ciudad “Hayward”. Esto es porque en la tabla cities no hay ninguna ciudad llamada
de esa manera. Por esta razén, la unién ignora las filas sin pareja de la tabla weather. Mds adelante verd cémo
resolver esto.

= Hay dos columnas que contienen el nombre de la ciudad. Esto es correcto porque la lista de columnas de las
tablas weather y cities se concatenan. Sin embargo, en la practica, esto no es deseable; asi que tal vez seria
mejor listar explicitamente las columnas en vez de usar », como se muestra a continuacion:

midb=# SELECT city, temp_lo, temp_hi, prcp, date, location FROM weather, cities WHERE city = nan
En el ejemplo de arriba, como todas las columnas en las dos tablas tienen nombres diferentes, el analizador sintactico

(parser) encuentra automaticamente a qué tabla pertenece cada columna. Si hubiera nombres de columnas duplicados
en las dos tablas, serfa necesario especificar la tabla a la que pertenece cada columna:

midb=# SELECT weather.city, weather.temp_lo, weather.temp_hi, weather.prcp,
weather.date, cities.location
FROM weather, cities WHERE cities.name = weather.city;

Generalmente se considera buen estilo especificar siempre en las uniones la tabla a la que pertenece cada columna, asi
la consulta no fallard en caso de agregar mas adelante un nombre de columna duplicado a una de las tablas.
Las consultas combinadas vistas hasta ahora también se pueden escribir de esta manera alternativa:

midb=# SELECT » FROM weather INNER JOIN cities ON (weather.city = cities.name);

Esta sintaxis no se usa tanto como la primera, pero se muestra aqui para ayudarle a entender los temas que siguen.

Ahora vamos a ver como incluir los registros relacionados con la ciudad “Hayward”. Lo que se desea de la consulta
es que escanee la tabla weather y, para cada fila, que encuentre las filas que concuerdan con la tabla cities. Si no se
encuentra concordancia, queremos que se agreguen “valores vacios” en las columnas correspondientes a la tabla cities.
Este tipo de consulta se llama combinacién externa (outer join). (Las combinaciones que se han visto hasta ahora son
internas o “inner joins™.) La orden serfa como esta:

midb=# SELECT » FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— B e T e
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
Hayward | 37 | 54 | | 1994-11-29 | |
(3 filas)

Mais especificamente, esta consulta se conoce como combinacién externa izquierda (left outer join) porque la tabla
mencionada a la izquierda del operador de unién tendrd sus filas en el resultado por lo menos una vez, mientras que
la tabla de la derecha solo tendra aquellas filas que concuerden con alguna fila de la tabla de la izquierda. Cuando se
muestra una fila de una tabla “izquierda” para la cual no hay pareja en la tabla “derecha”, se sustituyen valores vacios
(null) para las columnas de la tabla “derecha”.

También existen combinaciones externas derechas (right outer joins) y combinaciones externas completas (full outer
joins). Intente averiguar para qué sirven estas.

También es posible unir una tabla a si misma. Esto se conoce como autocombinacién (self join). Como ejemplo,
suponga que se desea encontrar registros de clima que estén en el rango de temperatura de otros registros de clima.

12 Capitulo 1. Contenido

Tutorial de PostgreSQL, Publicacion 8.4

Asi que se necesita comparar las columnas temp_loy temp_hi de cada fila de la tabla weather con las columnas
temp_loy temp_hi de todas las demads filas de la tabla weather. Esto se puede hacer con la siguiente consulta:

midb=# SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high, W2.city, W2.temp_lo AS low, W2.temp_hi

city | low | high | city | low | high
——————————————— B e s sttt
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 filas)

En el ejemplo anterior se han usado los alias W1 y W2 para la tabla, de tal forma que se puedan distinguir el lado
izquierdo y derecho de la unién. También puede usar este tipo de alias en otras consultas para ahorrarse letras. Por
ejemplo:

midb=# SELECT % FROM weather w, cities ¢ WHERE w.city = c.name;

Encontrard que este estilo abreviado se usa con mucha frecuencia.

1.2.6 Funciones de agregados

Como la mayoria de los demds productos de bases de datos relacionales, PostgreSQL cuenta con funciones de agrega-
dos (aggregate functions). Una funcién de agregado calcula un resultado tinico a partir de varias filas. Por ejemplo, hay
agregados que calculan conteo (count), sumatorias (sum), promedios (avg), maximos (max), minimos (min) a partir
de un conjunto de filas.

Como ejemplo, se puede encontrar la temperatura baja m4s alta de cualquier ciudad escribiendo:

midb=# SELECT max (temp_lo) FROM weather;

46
(1 fila)

Si uno quisiera saber a qué ciudad o ciudades pertenece esa temperatura, uno pensaria en algo como lo siguiente (que
es incorrecto):

SELECT city FROM weather WHERE temp_lo = max(temp_lo);

La linea de arriba no funciona porque el agregado max no se puede usar en la clausula WHERE. (Esta restriccion
existe porque la cldusula WHERE determina qué filas se van a incluir en el cdlculo del agregado; por lo cual debe
evaluarse antes de computar cualquier funcién de agregado). Sin embargo, la consulta puede reestructurarse para
lograr el resultado deseado, en este caso usando una subconsulta:

midb=# SELECT city FROM weather WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
(1 fila)

Esto funciona bien porque la subconsulta es un célculo independiente que calcula su agregado de manera separada de
lo que sucede en la consulta externa.

Los agregados también son muy utiles en combinacién con las cldusulas GROUP BY. Por ejemplo, se puede obtener
la temperatura baja mayor observada en cada ciudad con:

1.2. Parte llI: El lenguaje SQL 13

Tutorial de PostgreSQL, Publicacion 8.4

midb=# SELECT city, max(temp_lo) FROM weather GROUP BY city;

city | max
_______________ b
Hayward | 37
San Francisco | 46
(2 filas)

Lo anterior da como resultado una fila por ciudad. Cada resultado agregado se calcula sobre las filas de la tabla que
concuerdan con esa ciudad. Estas filas agrupadas se pueden filtrar usando HAVING:

midb=# SELECT city, max(temp_lo) FROM weather GROUP BY city HAVING max (temp_lo) < 40;

city | max
_________ o
Hayward | 37
(1 fila)

1.2.7 Actualizar registros

Puede actualizar filas existentes usando la orden UPDATE. Suponga que descubre que todas las lecturas de temperatu-
ras después del 28 de noviembre estin excedidas en 2 grados. Puede corregir los datos asi:

midb=# UPDATE weather SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2 WHERE date > 71994-11-28';

El nuevo estado de los datos seria:

midb=# SELECT » FROM weather;

city | temp_lo | temp_hi | prcp | date
777777777777777 to————————
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 filas)

1.2.8 Borrar registros

Puede eliminar las filas de una tabla usando la orden DELETE. Suponga que ya no estd interesado en los datos climé-
ticos de “Hayward”. Puede hacer lo siguiente para eliminarlos de la tabla:

midb=# DELETE FROM weather WHERE city = ’'Hayward’;

Todos los registros de clima que pertenecen a “Hayward” se eliminan:

midb=# SELECT % FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B s A s s
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 filas)

Debe tener cuidado con declaraciones de esta forma:

14 Capitulo 1. Contenido

Tutorial de PostgreSQL, Publicacion 8.4

DELETE FROM nombre_de_la_tabla;

Si no usa condiciones (con WHERE), DELETE eliminard todas las filas de la tabla especificada, dejandola totalmente
vacia. jEl sistema no le va a pedir ninguna confirmacién para ejecutar una orden como esta!

1.3 Parte lll: Caracteristicas avanzadas

En la parte anterior del tutorial se tocaron algunos de los conceptos basicos de SQL para almacenar y acceder a los
datos en PostgreSQL. Ahora se discutirdn algunas de las caracteristicas mas avanzadas de SQL que simplifican la
administracién y que previenen la pérdida o dafio de los datos.

En esta parte se hard referencia en ocasiones a los ejemplos de la Parte I1: El lenguaje SOL para cambiarlos o mejo-
rarlos, asi que serd necesario que haya leido esa parte.

1.3.1 Vistas

Recuerde lo que se hizo en Uniones entre tablas. Suponga que la lista combinada de registros de climas y ubicaciones
de las ciudades es de interés especial para su aplicacién, pero que usted no desea escribir siempre la consulta cada vez
que la necesite. Para estos casos, puede crear una vista a partir de la consulta, lo que le da a la consulta un nombre al
cual usted se puede referir como si fuera una tabla comun y corriente:

midb=# CREATE VIEW mivista AS SELECT city, temp_lo, temp_hi, prcp, date, location FROM weather,

Ahora puede hacer esto:

midb=# SELECT % FROM mivista;

city | temp_lo | temp_hi | prcp | date | location
——————————————— s Et T T st T

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | (-194,53)

San Francisco | 41 | 55 | 0 | 1994-11-29 | (-194,53)

(2 filas)

Hacer uso libre de las vistas es un aspecto clave del buen disefio de bases de datos SQL. Las vistas permiten encapsular
los detalles de la estructura de las tablas, estructura que puede cambiar a medida que su aplicacién evoluciona, detrds
de interfaces consistentes.

Las vistas se pueden usar casi en cualquier parte donde se pueda usar una tabla. Construir vistas a partir de otras vistas
también es una practica comun.

1.3.2 Claves primarias y foraneas

Siguiendo con las tablas weather y cities de la Parte II: El lenguaje SQOL, considere el siguiente problema: su-
ponga que quiere asegurarse de que nadie pueda insertar filas en la tabla weat her que no tengan una ciudad corres-
pondiente en la tabla cities. A esto se le conoce como mantener la integridad referencial de los datos. PostgreSQL
le da las herramientas para hacer esto por usted.

Cree una base de datos nueva llamada clima:

$ createdb clima

Ahora acceda a la base de datos con psql y cree las tablas weather y cities, pero esta vez especificando las claves
primarias y fordneas para mantener la integridad referencial de los datos:

1.3. Parte lll: Caracteristicas avanzadas 15

citie

Tutorial de PostgreSQL, Publicacion 8.4

clima=# CREATE TABLE cities (city varchar (80) primary key, location point);
clima=# CREATE TABLE weather (city varchar (80) references cities(city), temp_lo int, temp_hi int, pr

En la tabla cities, se especificé la columna city como clave primaria (primary key) y en la tabla weather la
columna city como clave fordnea (foreign key). Este es el cambio que permitird resolver el problema descrito arriba.

Pueble ahora la tabla cities con las ciudades que quiera. Por ejemplo:

clima=# INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)7);

Pueble también la tabla weat her con registros referentes a cualquiera de las ciudades que agregé en latablacities.
Por ejemplo:

clima=# INSERT INTO weather (city, temp_lo, temp_hi, prcp, date) VALUES (’San Francisco’, 43, 57, 0.

Ahora intente agregar un registro incorrecto en la tabla weather (usando una ciudad que no estd registrada en la
tablacities):

clima=# INSERT INTO weather VALUES (’Berkeley’, 45, 53, 0.0, 71994-11-28");

Deberia ver un error como este:

ERROR: insercidén o actualizacidén en la tabla «weather» viola la llave fordnea «weather_city_fkey»
DETALLE: La llave (city)=(Berkeley) no estd presente en la tabla «cities».

El comportamiento de las claves fordneas puede ajustarse especificamente para las necesidades de cada aplicacion.
Aqui no se va a tratar nada mas alla de este ejemplo sencillo, pero puede leer el capitulo 5 del manual de PostgreSQL
para obtener mas informacién. El uso correcto de las claves fordneas mejora la calidad de las aplicaciones de bases de
datos, asi que preoctpese por aprender lo necesario sobre el tema.

1.3.3 Transacciones

Las transacciones son un concepto fundamental de todos los sistemas de bases de datos. El punto esencial de una
transaccion es su capacidad para empaquetar varios pasos en una sola operacién “todo o nada”. Los estados intermedios
entre los pasos no son visibles para otras transacciones concurrentes, y si ocurre alguna falla que impida que se
complete la transaccidn, entonces ninguno de los pasos se ejecuta y no se afecta la base de datos en absoluto.

Por ejemplo, considere una base de datos bancaria que contiene balances de varias cuentas de clientes y balances
totales de depdsito de sucursales. Suponga que queremos registrar un pago de $100 de la cuenta de Alicia a la de
Roberto. Simplificando la operacién exageradamente, las 6rdenes SQL para hacerlo se verian asi:

UPDATE cuentas SET balance = balance - 100.00 WHERE nombre = ’'Alicia’;
UPDATE sucursales SET balance = balance - 100.00 WHERE nombre = (SELECT sucursal FROM cuentas WHERE 1
UPDATE cuentas SET balance = balance + 100.00 WHERE nombre = 'Roberto’;
UPDATE sucursales SET balance = balance + 100.00 WHERE nombre = (SELECT sucursal FROM cuentas WHERE 1

Los detalles de estas érdenes no son importantes en este momento; lo que importa es que hay varias actualizaciones
separadas involucradas para lograr esta operacién mas o menos sencilla. Los operadores bancarios van a querer estar
seguros de que o todos estos pasos se ejecutan o no se ejecuta ninguno. Definitivamente no seria aceptable si una falla
del sistema resulta en que Roberto recibe $100 que no fueron debitados de la cuenta de Alicia. Tampoco si a Alicia le
debitaran y a Roberto no le abonaran. Se necesita una garantia de que si algo sale mal en el transcurso de la operacidn,
ninguno de los pasos ejecutados hasta el momento tendrdn efecto. Para el ejemplo anterior, agrupar las actualizaciones
en una transaccién proporciona esa garantia. De las transacciones se dice que son atémicas: desde el punto de vista de
otras transacciones, la transaccién ocurre completamente o no ocurre en absoluto.

También es necesario garantizar que, después que se complete una transaccion y que el sistema de bases de datos tenga
completo conocimiento de ella, realmente el registro haya sido permanente y que este no se perderd, incluso si llega a

16 Capitulo 1. Contenido

http://www.postgresql.org/docs/8.4/interactive/ddl.html

Tutorial de PostgreSQL, Publicacion 8.4

suceder una falla poco tiempo después. Por ejemplo, si se estuviera registrando un retiro de Roberto, no seria aceptable
que el débito de su cuenta desapareciera en una falla del sistema justo después de que €l sale del banco. Una base de
datos transaccional garantiza que todas las actualizaciones realizadas por una transaccién se grabardn en un medio de
almacenamiento permanente (en disco, por ejemplo) antes de que la transaccidn se reporte completamente.

Otra propiedad importante de las bases de datos transaccionales se relaciona con la nocién de las actualizaciones
atémicas: cuando hay muchas transacciones concurrentes, ninguna de ellas deberia conocer los cambios incompletos
hechos por las demds. Por ejemplo, si alguna transaccién estd ocupada totalizando todos los balances de una sucursal,
no servirfa que incluyera el débito de la sucursal de Alicia pero no el crédito a la sucursal de Roberto, ni viceversa. Asi
que las transacciones deben ser todo o nada, no solamente en términos de su efecto permanente en la base de datos,
sino también en términos de su visibilidad a medida que suceden. Las actualizaciones hechas hasta cierto momento
por una transaccién abierta son invisibles para las demads transacciones hasta que la transaccién se complete. A partir
de su finalizacidn, todas las actualizaciones se hacen visibles simultdneamente.

En PostgreSQL, una transaccién se indica encerrando las érdenes SQL de la transaccién entre las érdenes BEGIN y
COMMIT. Entonces la transaccién bancaria del ejemplo de arriba se veria asi:

BEGIN;

UPDATE cuentas SET balance = balance - 100.00 WHERE nombre = ’"Alicia’;
-— etc etc

COMMIT;

Si en medio de una transaccion se decide que ya no se quiere registrar los cambios (tal vez el balance de Alicia se
volvié negativo en algiin momento, por ejemplo), se puede recurrir a la orden ROLLBACK en lugar de COMMIT y todas
las actualizaciones hasta ese punto quedarian canceladas.

De hecho, PostgreSQL trata cada declaracion de SQL como si se estuviera ejecutando dentro de una transaccion.
Si uno no especifica una orden BEGIN, entonces cada declaracién individual tiene un BEGIN vy, si es exitosa, un
COMMIT alrededor de ella. Algunas veces, a un grupo de declaraciones encerradas entre BEGIN y COMMIT se les
Ilama un bloque de transaccion.

Nota: BEGIN y COMMIT automaticos.

Algunas bibliotecas cliente usan las érdenes BEGIN y COMMIT automdticamente, de tal forma que uno obtiene el
efecto de bloques de transaccion sin pedirlos. Revise la documentacion de la interfaz que esté usando.

Es posible controlar las declaraciones en una transaccién de una manera mas granular por medio de puntos de recu-
peracién (savepoints). Los puntos de recuperacién permiten descartar selectivamente algunas partes de la transaccién
mientras las demds si se ejecutan. Después de definir un punto de recuperacién con SAVEPOINT, se puede volver
a él si es necesario por medio de ROLLBACK TO. Todos los cambios de la base de datos hechos por la transaccién
entre el punto de recuperacion y el rollback se descartan, pero los cambios hechos antes del punto de recuperacion se
mantienen.

Después de volver a un punto de recuperacion, este ultimo sigue definido, o sea que se puede volver a él varias veces.
Y al contrario, si uno estd seguro de que no necesita volver a un punto de recuperacion particular otra vez, entonces
puede liberarlo para que el sistema ahorre algunos recursos. Tenga en cuenta que tanto liberar un punto de recuperacién
como volver a €l liberard automdticamente todos los puntos de recuperacion definidos después de €l.

Todo esto sucede dentro del bloque de transaccién, por lo tanto nada es visible para otras sesiones de la base de datos.
Cuando se ejecuta el bloque de transaccidn, las acciones ejecutadas se hacen visibles como una unidad para otras
sesiones, mientras que las acciones de rollback nunca se hacen visibles.

Retomando el ejemplo de la base de datos bancaria, suponga que se debitan $100 de la cuenta de Alicia y se abonan a
la cuenta de Roberto, pero que después resulta que se debid abonar a la cuenta de Walter. Esto se podria hacer usando
un punto de recuperacion:

BEGIN;
UPDATE cuentas SET balance = balance - 100.00 WHERE nombre = ’"Alicia’;
SAVEPOINT mi_savepoint;

1.3. Parte lll: Caracteristicas avanzadas 17

Tutorial de PostgreSQL, Publicacion 8.4

UPDATE cuentas SET balance = balance + 100.00 WHERE nombre = ’'Roberto’;
-—— Uy ... no era la cuenta de Roberto sino la de Walter

ROLLBACK TO mi_savepoint;

UPDATE cuentas SET balance = balance + 100.00 WHERE nombre = 'Walter’;
COMMIT;

Este ejemplo, claro, estd sobresimplificado, pero existe mucha posibilidad de control en un bloque de transaccién por
medio de los puntos de recuperacién. Es mas, ROLLBACK TO es la tinica manera de retomar el control de un bloque
de transaccion puesto en estado de aborto por el sistema debido a un error, devolverlo completamente y reiniciarlo.

1.3.4 Funciones ventana

Una funcién ventana realiza una operacién sobre un conjunto de filas de una tabla que de alguna manera estan rela-
cionadas con la fila actual. Esto es similar al tipo de cdlculo que se puede hacer con Funciones de agregados. Pero a
diferencia de estas, el uso de las funciones ventana no hace que las filas se agrupen en una sola fila como resultado
(las filas mantienen sus identidades por separado). Entre bastidores, la funcién ventana puede acceder a mds que solo
la fila del resultado de la consulta.

Este es un ejemplo que muestra cémo comparar el salario de cada empleado con el salario promedio del departamento
al que pertenecen:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
77777777777 Bt H e
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1| 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

Las tres primeras columnas del resultado vienen directamente de la tabla empsalary, y por cada fila en la tabla hay
una fila como resultado. La cuarta columna representa un promedio tomado de todas las filas de la tabla que tienen
el mismo valor en depname que la fila actual. (De hecho, esta es la misma funcién que desempeia la funcién de
agregado avg, pero la cldusula OVER hace que sea tratada como una funcién ventana y computada sobre un conjunto
apropiado de filas).

La llamada a una funcién ventana siempre contiene la cldusula OVER después del nombre de la funcién y sus argu-
mentos. Esto es lo que la distingue sintdcticamente de una funcién comun y corriente o de una funcién de agregado.
La cldusula OVER determina exactamente como se deben partir las filas de la consulta para que sean procesadas por la
funcién ventana. La lista PARTITION BY dentro de OVER especifica la divisién de las filas en grupos, o particiones,
que comparten los mismos valores de la expresion (o expresiones) PARTITION BY. Para cada fila, la funcién ventana
se computa sobre las filas que estdn dentro de la misma particién que la fila actual.

Aunque avg produce el mismo resultado sin importar en qué orden procese las filas de la particion, no pasa lo mismo
con las funciones ventana. En estas, se puede controlar el orden usando ORDER BY dentro de OVER. Como en este
ejemplo:

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC) FROM empsalar:

18 Capitulo 1. Contenido

Tutorial de PostgreSQL, Publicacion 8.4

depname | empno | salary | rank
——————————— B
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 3900 | 1
personnel | 5 3500 | 2
sales | 1] 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

Como se muestra aqui, la funcién rank produce una gradacién numérica dentro de la particioén de la fila actual para
cada valor diferente de ORDER BY, en el orden definido por la cldusula ORDER BY. rank no necesita pardmetros
explicitos porque su comportamiento lo determina la clausula OVER en su totalidad.

Las filas consideradas por una funcién ventana son aquellas de la “tabla virtual” producida por la clausula FROM de la
consulta, filtrada por sus cldusulas WHERE, GROUP BY y HAVING. Por ejemplo, una fila removida porque no cumple
la condicién WHERE es invisible para cualquier funcién ventana. Una consulta puede tener muchas funciones ventana
que recortan los datos de diferentes formas por medio de diferentes clausulas OVER, pero todas ellas actiian sobre la
misma coleccidn de filas definidas por la tabla virtual.

Ya vimos que ORDER BY se puede omitir si el orden de las filas no importa. También es posible omitir PARTITION
BY, en cuyo caso habria solamente una particién que contiene todas las filas.

Hay otro concepto importante asociado con las funciones ventana: para cada fila, hay un conjunto de filas dentro de
su particién que se conoce como su “marco de ventana”. Muchas funciones ventana (pero no todas) actian solamente
sobre las filas del marco, en vez de actuar sobre toda la particién. Predeterminadamente, si se usa ORDER BY, entonces
el marco consta de todas las filas desde el inicio de la particion hasta la fila actual, mds cualquier otra fila siguiente que
seaigual a la fila actual de acuerdo con la cldusula ORDER BY. Cuando se omite ORDER BY, el marco predeterminado
consta de todas las filas de la particién *. Aqui hay un ejemplo que usa sum:

SELECT salary, sum(salary) OVER () FROM empsalary;
salary | sum
,,,,,,,, b
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Arriba, como no se usa ORDER BY en la clausula OVER, el marco de la ventana es lo mismo que la particién, que por
la omisién de PARTITION BY es toda la tabla; en otras palabras, cada suma se hace sobre toda la tabla y por eso se
obtiene el mismo resultado para cada fila resultante. Pero si se agrega una cldusula ORDER BY, se obtienen resultados
muy diferentes:

3 Existen opciones para definir el marco de otras formas, pero este tutorial no las cubre. Vea la Seccion 4.2.8 de la documentacién de PostgreSQL
para mds detalles.

1.3. Parte lll: Caracteristicas avanzadas 19

http://www.postgresql.org/docs/8.4/interactive/sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS

Tutorial de PostgreSQL, Publicacion 8.4

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
,,,,,,,, I
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Aqui la suma se hace desde el primer salario (el mds bajo) hasta el actual, incluyendo cualquiera igual al actual (note
los resultados para ver los salarios repetidos).

Las funciones ventana se permiten Unicamente en la lista SELECT y la cldusula ORDER BY de la consulta. En cual-
quier otro lugar estdn prohibidas, por ejemplo en las cldusulas GROUP BY, HAVING y WHERE. Esto se debe a que
las funciones se ejecutan 16gicamente después de estas cldusulas. También se ejecutan después de las funciones de
agregados. Quiere decir que es vélido incluir llamadas a funciones de agregados en los argumentos de una funcién
ventana, pero no al contrario.

Si se necesita filtrar o agrupar las filas después de terminar el cdlculo de la ventana, se puede usar una subseleccion.
Por ejemplo:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

La consulta de arriba solamente muestra las filas de la consulta interna que tengan un valor de rank menor que 3.

Cuando una consulta involucra muchas funciones ventana, es posible escribir cada una de ellas con una cldusula OVER
separadamente, pero esto es redundante y propenso a errores si se desea el mismo comportamiento de ventana para
varias funciones. En lugar de esto, a cada comportamiento de ventana se le puede dar un nombre en una cldusula
WINDOW y luego hacer referencia al mismo en OVER. Por ejemplo:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

Puede encontrar mds detalles sobre funciones ventana en la Seccion 4.2.8, Seccion 7.2.4 y la pagina de referencia de
SELECT en la documentacion de PostgreSQL.

Notas

1.3.5 Herencia

La herencia es un concepto de bases de datos orientadas a objetos que abre nuevas posibilidades interesantes de disefio
de bases de datos.

20 Capitulo 1. Contenido

http://www.postgresql.org/docs/8.4/interactive/sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS
http://www.postgresql.org/docs/8.4/interactive/queries-table-expressions.html#QUERIES-WINDOW
http://www.postgresql.org/docs/8.4/interactive/sql-select.html

Tutorial de PostgreSQL, Publicacion 8.4

Creemos dos tablas: una tabla de ciudades (cities)y otra tabla de capitales (capitals). Naturalmente, las capita-
les también son ciudades, asi que uno quisiera tener cierta forma de mostrar las capitales de manera implicita cuando
se listan las ciudades. Si uno es realmente inteligente inventaria un esquema como este:

CREATE TABLE capitals (

name text,

population real,

altitude int, -— (en pies)
state char (2)

)i

CREATE TABLE non_capitals (

name text,
population real,
altitude int -— (en pies)

)i

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

Esto funciona bien para las consultas, pero se va poniendo feo cuando se necesita actualizar varias filas.
Una mejor solucién es esta:

CREATE TABLE cities (

name text,
population real,
altitude int -— (en pies)

)

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

En este caso, una fila de capitals hereda todas las columnas de su tabla madre, cities (name, populationy
altitude). Eltipo de dato de la columna name es text, que es un tipo de dato nativo de PostgreSQL para cadenas
de letras de longitud variable. Las capitales de estado tienen una columna adicional, st ate, que muestra su estado.
En PostgreSQL, una tabla puede heredar de cero o més tablas.

Por ejemplo, la siguiente consulta encuentra el nombre de todas las ciudades, incluyendo las capitales, que estdn
ubicadas a una altitud superior a los 500 pies:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Resultado:
name | altitude
,,,,,,,,,,, [P
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

Por otro lado, la siguiente consulta encuentra todas las ciudades que no son capitales de estado y que estdn situadas a
una altitud igual o superior a 500 pies:

1.3. Parte lll: Caracteristicas avanzadas 21

Tutorial de PostgreSQL, Publicacion 8.4

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, b
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Aqui, el ONLY antes de cities indica que la consulta debe ejecutarse solamente sobre la tabla de ciudades y no
sobre las tablas que estan debajo de ella en la jerarquia de herencia. Muchas de las 6rdenes que ya se han mencionado
(SELECT, UPDATE y DELETE) admiten la notacién ONLY.

Nota: Aunque la herencia es ttil con frecuencia, no ha sido integrada con restricciones tinicas ni con claves fordneas,
lo que limita su utilidad. Vea la Seccién 5.8 de la documentacién de PostgreSQL para mds detalles.

Hasta aquf llega este tutorial. PostgreSQL tiene muchas mds caracteristicas que no se tocaron en este tutorial introduc-
torio. Estas caracteristicas se discuten con mds detalle en la Documentacion de PostgreSQL.

1.4 Créditos

= Luis Felipe Lopez Acevedo - Autor, traductor

» The PostgreSQL Global Development Group - Autor original

1.5 Licencia

Este tutorial es una traduccién al espafiol del tutorial original de PostgreSQL con algunas modificaciones adicionales.
Este trabajo se considera una obra derivada y a esta se aplica la misma licencia de uso del tutorial original, PostgreSQL
License, una licencia libre. El cuerpo de la licencia empieza al terminar este parrafo. Cualquier error o inconsistencia
introducida en esta obra derivada es responsabilidad de Luis Felipe Lopez Acevedo y no de los autores originales.

Portions Copyright (c) 2012, Luis Felipe Lépez Acevedo
Portions Copyright (c) 1996-2011, The PostgreSQL Global Development Group
Portions Copyright (¢) 1994, The Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and
without a written agreement is hereby granted, provided that the above copyright notice and this paragraph and the
following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDI-
RECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING
OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CA-
LIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTI-
CULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND THE UNI-

22 Capitulo 1. Contenido

http://www.postgresql.org/docs/8.4/interactive/ddl-inherit.html
http://www.postgresql.org/docs/8.4/interactive/index.html
http://sirgazil.bitbucket.org/
http://www.postgresql.org/
http://www.postgresql.org/docs/8.4/interactive/tutorial.html

Tutorial de PostgreSQL, Publicacion 8.4

VERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

1.5. Licencia 23

	Contenido
	Parte I: Primero lo primero
	Parte II: El lenguaje SQL
	Parte III: Características avanzadas
	Créditos
	Licencia

