

Elgg 1.8 Social Networking

Create, customize, and deploy your very own social
networking site with Elgg

Cash Costello

 BIRMINGHAM - MUMBAI

Elgg 1.8 Social Networking

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2008

Second edition: February 2012

Production Reference: 2130212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-130-8

www.packtpub.com

Cover Image by Jose (jose@joseargudo.com)

Credits

Author
Cash Costello

Author of 1st Edition
Mayank Sharma

Reviewers
Valentin Crettaz

Kevin Jardine

Danny Lieberman

Marcus Povey

Brett Profitt

Liran Tal

Evan Winslow

Acquisition Editor
David Barnes

Lead Technical Editor
Meeta Rajani

Technical Editor
Llewellyn F. Rozario

Project Coordinator
Vishal Bodwani

Proofreader
Aaron Nash

Indexer
Hemangini Bari

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

Foreword

I am delighted that Cash Costello undertook the task of writing this book. Cash
typifies the very essence of open source. He contributes on every level to the Elgg
project: bug reports, core patches, plugins as well as offering advice and support in
the community. Therefore, it is fitting that it is he who authors this edition.

As an updated version of the first Elgg book, this is an excellent resource for those
interested in Elgg development due to its attention to detail, clearly written style and
knowledgeable author.

I would like to give a special mention to Brett Profitt, Elgg’s lead developer, and
the technical reviewer of this book. Brett has played a key role in the continually
improvement of Elgg and over the past 20 months or so his efforts have had a hugely
positive impact on the wider Elgg community with more members now participating
in Elgg’s development, promotion, and support.

Elgg has come a long way from the very first version. Having started as a proof-of-
concept, Elgg has grown into a leading social networking engine that is powering
a range of socially aware applications. At the time of writing, Elgg had been
downloaded around 500,000 times with over 900 plugins contributed; prompting
more than two million downloads. As the community becomes ever more involved, I
feel the future is bright for Elgg.

Dave Tosh
Elgg Co-Founder

About the Author

Cash Costello performs research for the Johns Hopkins University Applied
Physics Laboratory. In addition to his work there in computer vision and machine
learning, he coordinates a team of developers in the creation of collaborative
web applications.

Cash is also a core developer of the Elgg Social Networking framework. He is active
within the Elgg community, whether sharing his plugins or helping others to get the
most out of Elgg.

Thank you to all the editors from Packt that were involved in
shepherding this book from concept to publication. I would also
like to thank all the reviewers who contributed so much through
their feedback. This book would not have been possible without the
original work of Ben, Dave, and Marcus in creating Elgg. The version
of Elgg described in this book is the result of a lot effort by Brett and
Evan. Great job, guys.

Most of all I would like thank my wife for her encouragement and
patience during this very long process. She read every page regardless
of interest in web development. Merci beaucoup, mon amie.

About the Author of 1st edition

Mayank Sharma is a contributing editor at SourceForge, Inc's Linux.com. He
also writes a monthly column for Packt Publishing. Mayank has contributed several
technical articles to the IBM developerWorks where he hosts a Linux Security blog.
When not writing, he teaches courses on Open Source topics at the Indian Institute of
Technology, Delhi, as guest lecturer.

Thanks to my mom Shashi and dad Rakesh for laying down tough
standards, and younger brother Shashank who beat me at book-
writing to become my mentor.

Gratitude to David Barnes for guiding me from start to finish, to
Rashmi Phadnis for her edits, to Patricia Weir for managing and
scheduling the book, and to the Elgg developers and community for
such a wonderful project.

About the Reviewers

Valentin Crettaz holds a master degree in Information and Computer Sciences
from the Swiss Federal Institute of Technology in Lausanne, Switzerland (EPFL).
After he finished studying in 2000, Valentin worked as a software engineer with SRI
International in the Silicon Valley (Menlo Park, USA) and as a principal engineer in
the Software Engineering Laboratory at EPFL. In 2002, as a good patriot, he came
back to Switzerland to co-create a start-up called Condris Technologies, a new
venture that provides IT development and consulting services and specializes in
the creation of innovative next-generation software architecture solutions as well as
secure wireless telecommunication infrastructures.

From 2004 to 2008, Valentin served as a senior IT consultant in one of the
largest private banks in Switzerland, where he worked on next-generation
e-banking platforms.

Starting in 2008, Valentin joined Goomzee Corporation as Chief Software Guru.
Goomzee is a Montana based mobile marketing company that provides solutions for
connecting buyers and sellers in any market vertical through mobile interactions.

Valentin also owns a small consultancy business called Consulthys, a new venture
that strongly focuses on leveraging Web 2.0 technologies in order to reduce the
cultural gap between IT and business people.

Marcus Povey is a software architect with a wide range of commercial experience,
including portable medical systems, point-of-sale hardware, web platform
development, and secure messaging.

Formerly a Senior Architect at Curverider, Marcus worked with Ben Werdmuller to
develop the open source social networking platform Elgg, and was an integral part
of its architecture design process from version 1.0 onwards.

Marcus left Curverider in 2009 to form his own consultancy company; he also
organizes BarCamp Transparency, an annual event to discuss openness and direct
democracy in government.

Marcus maintains a blog at http://www.marcus-povey.co.uk

Brett Profitt has been interested in computers and programming since his youth.
Whether it was pecking at keys on a Commodore 64 until a monochrome display
echoed his name, leading a middle school computer club, or writing apps on his
TI-83 calculator during chemistry class, computers have always been an important
part of his life as one of his passions.

Brett received two degrees from The Ohio State University: A Bachelor of
Instrumental Music Education and a Bachelor of Art in Japanese Language and
Culture. Before adopting software development as a career, he held positions as
a pre-school teacher, website designer, Kindergarten music teacher, and tutor for
Japanese-speaking students in America.

Brett strongly believes in and supports open source philosophies. He is proud to be a
member of this powerful community and enjoys interacting and co-developing with
the larger open source community through Elgg.

I would like to thank my family who have provided inspiration and
support in all my pursuits, no matter if arts, sciences, or languages.
I would also like to thank my friends, who make Friendsgiving the
best holiday of the year.

Liran Tal is a leading software developer, expert Linux engineer, and an
avid supporter of the open source movement. In 2007, he has redefined network
RADIUS management by establishing daloRADIUS, a world-recognized and
industry-leading open source project. Passionate about creating software and enjoys
taking on new ventures, he is mostly focused on building web applications and
social networking technologies.

He graduated cum laude in his Bachelor of Business and Information Systems
Analysis studies and enjoys spending his time playing the guitar, hacking all things
Linux, and continuously experimenting and contributing to open source projects.

Sincere thanks to Curverider for creating Elgg and making it available and to
everyone on the Elgg community who has been there to push it forward.

I'd like to thank Tal, my wife, for her love, support and patience; and
my mom and dad, for being a source of inspiration in my life.

Evan Winslow holds a B.S. in Computer Science from Stanford University. He has
been working with Elgg since 2009 and has been a member of the Core Development
Team since 2010. As a member of the Core Team, he contributed significantly to the
JavaScript and CSS advances in Elgg 1.8. Evan lives in Aliso Viejo, California with his
wife Julie and son James, and works his dream job doing front-end web development
full-time. You can reach him at evan@elgg.org.

mailto:evan@elgg.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Social Networking and Elgg	 7

Social features	 8
Profiles	 8
Relationships	 8
Content sharing	 8
Activity and notifications	 8
Groups	 8
Communication	 9

What is Elgg?	 9
The Elgg engine	 10

User management	 11
Privacy controls	 11
Theming	 11
Commenting	 12
Tagging	 12
Widgets	 12
Internationalization	 13
Feeds	 13
Web services	 14

The power of plugins	 14
Bundled plugins	 14
Third-party plugins	 14
Themes	 15
Building your own plugins	 15

Case studies	 15
Niche social network	 16

Designing and building the site	 16
Deploying the site	 16

Table of Contents

[ii]

Plugins mentioned	 17
Corporate intranet	 17

Designing and building the site	 17
Deploying the site	 18
Plugins mentioned	 18

Educational collaboration	 18
Designing and building the site	 19
Deploying the site	 19
Plugins mentioned	 19

Elgg resources	 20
Elgg community	 20
Elgg wiki	 20
Developer resources	 20

A few words of advice	 20
Take notes	 20
Save resources	 21
Be methodical	 21
Finding help	 21

Summary	 21
Chapter 2: Installing Elgg	 23

Preparing the server	 23
Checking requirements	 24
Downloading the latest version	 24
Extracting the files	 25
Moving files to your web server directory	 25
Configuring the server	 27
Create the database	 28

Run Elgg's installer	 29
Loading the database	 31
Configure Elgg	 32
Creating the admin account	 33
All done!	 34

Summary	 35
Chapter 3: A Tour of Your First Elgg Site	 37

Getting around	 38
Registering users	 39
User profiles and avatars	 40

Profile information	 41
Avatar	 42
Profile widgets	 43

Table of Contents

[iii]

Friends	 45
Activity stream	 47
Tools	 48

Blogs	 48
Bookmarks	 49
Files	 50
Groups	 50
Pages	 52
Messages	 53
The wire	 53

User settings	 54
Your settings	 54
Tools	 55
Notifications	 55

Administration	 56
Activating plugins	 58
Site categories	 58
Custom profile fields	 59
Default widgets	 59
Site pages	 60
Reported content	 61

Customizing your site	 61
User registration and authentication	 62
Widgets	 62
Friendship model	 62
Roles	 62
Help and support	 63

Summary	 63
Chapter 4: Sharing Content	 65

Blogs	 66
Creating a blog post	 67

Embedding photos and files	 68
Publishing	 69

Finding and viewing	 69
Search	 70
Lists of blog posts	 70
RSS feeds	 71
Widget	 72

Commenting	 72
Use cases	 73
Customizations	 73

Table of Contents

[iv]

Bookmarks	 74
Adding a bookmark	 74

Bookmarklet	 76
Viewing	 77
Use cases	 78

File	 79
Uploading a file	 79
Viewing	 80
Use cases	 83
Customizations	 83

The wire	 83
Posting	 84
Viewing	 85
Twitter integration	 86
Use cases	 89
Customizations	 90

Summary	 90
Chapter 5: Communities, Collaboration, and Conversation	 91

Groups	 92
Creating a group	 92
Group profile	 94
Membership	 95
Discussion forum	 96
Group tools	 98
Finding groups	 99
Use cases	 100
Customizations	 100

Pages	 101
Creating pages	 102
Viewing	 103
Use cases	 104
Customizations	 104

Messages	 104
Inbox	 104
Composing	 105
Customizations	 106

Message board	 106
Customizations	 108

Summary	 108

Table of Contents

[v]

Chapter 6: Finding and Using Plugins	 109
Plugin administration	 109

Filtering and sorting	 109
Plugin dependencies	 110
Plugin settings	 113

Finding plugins	 113
Browsing the repository	 115
Searching	 115
Evaluating before downloading	 115

Look at the plugin overview	 115
Read the comments	 115
Check the history	 116

Custom plugins	 116
Installing plugins	 116

Test server	 117
Copying the code	 117
Activating and configuring	 117

Invalid plugin?	 118
Troubleshooting	 118

Themes	 118
Finding and installing themes	 119

Free themes	 119
Commercial themes	 120
Custom themes	 120
Installing themes	 121

Major community plugins	 122
Tidypics	 122

Plugin profile	 122
Administration	 123
Uploading photos	 124
Viewing photos	 124
Tagging photos	 126

Event calendar	 126
Plugin profile	 127
Administration	 127
Site calendar	 127
Group calendar	 128

Profile Manager	 128
Plugin profile	 128
Adding profile fields	 129
Configuring the profile fields	 130
Plugin settings	 130

Summary	 131

Table of Contents

[vi]

Chapter 7: Creating Your First Plugin	 133
What you need to know	 134
Elgg developer resources	 135
Setting up your development environment	 136

Editing code	 136
Configuring your site	 137

Hello, World!	 138
Plugin skeleton	 138

Create your plugin directory	 138
Plugin manifest	 139
Start script	 139
Activating the hello world plugin	 140

Register for the init, system event	 140
Adding a new route	 141
Creating a web page	 142
Update routing	 143
Add to the site menu	 144
Extending the page handler	 145
Add a sidebar menu	 146
Language support	 148
Personalizing the content	 149
Organizing your content into views	 150

A greeting view	 151
A stats view	 153

Review	 155
Debugging	 155

Debugging to the log	 156
Debugging to the screen	 157
Debugging PHP through an IDE	 158
Firebug and other browser development tools	 159
Elgg developer tools	 161

Inspect	 161
Theming sandbox	 162

Summary	 162
Chapter 8: Customization through Plugins	 163

Lesson 1: Changing wording	 164
Problem	 164
Solution	 164
Example	 164

Step 1: Create the plugin structure	 165
Step 2: Find the language strings	 166
Step 3: Override the language string	 166

Table of Contents

[vii]

Exercise	 167
Lesson 2: Modifying a section of a page	 167

Problem	 167
Solution	 168
Example	 168

Step 1: Find the view to override	 168
Step 2: Create the plugin structure	 170
Step 3: Edit the logo view	 170
Step 4: Style the header	 172

Exercise	 173
Lesson 3: Adding new content to a page	 173

Problem	 173
Solution	 173
Example	 174

Step 1: Find the view to extend	 175
Step 2: Create the plugin structure	 175
Step 3: Build our view	 175
Step 4: Make the tips random	 176

Exercise	 177
Lesson 4: Doing something when X happens	 178

Problem	 178
Solution	 178
Example	 178

Step 1: Find the event	 178
Step 2: Create the plugin structure	 179
Step 3: Write the function that sends the e-mail	 180

Exercise	 180
Lesson 5: Creating a custom widget	 181

Problem	 181
Solution	 181
Example	 181

Step 1: Create the plugin structure	 182
Step 2: Create the widget edit view	 182
Step 3: Create the widget content view	 184

Exercise	 186
Lesson 6: Giving your users options	 186

Problem	 186
Solution	 187
Example	 187

Step 1: Create the plugin structure	 187
Step 2: Add user settings	 188
Step 3: Create the toolbar view	 190
Step 4: Add CSS	 191

Table of Contents

[viii]

Exercise	 192
Lesson 7: Adding JavaScript	 193

Problem	 193
Solution	 193
Example	 193

Step 1: Create the plugin structure	 194
Step 2: Load the JavaScript file	 194
Step 3: Add CSS and JavaScript initialization	 195

Exercise	 196
Lesson 8: Changing how Elgg does X	 197

Problem	 197
Solution	 197
Example	 197

Step 1: Create the plugin structure	 198
Step 2: Create the index page	 199
Step 3: Define the views	 201
Step 4: Add the CSS	 203
Step 5: Add a plugin setting	 204

Exercise	 206
Lesson 9: Collecting and storing data	 207

Problem	 207
Solution	 207
Example	 207

Overview	 208
Step 1: Create the plugin structure	 208
Step 2: Create the main help page	 209
Step 3: Create the categories	 211
Step 4: Add an administration page	 212
Step 5: Create the form body	 213
Step 6: Create the save action	 215
Step 7: Create the help category page	 217
Step 8: Create the help object view	 219
Step 9: Add the help sidebar	 221
Step 10: Add CSS for the topic listing page	 222
Step 11: Finish the main help page	 223

Exercise	 225
Summary	 226

Chapter 9: Theming Elgg	 227
What you need to know	 228
Theming basics	 228

Elgg's default theme	 228
HTML	 229
CSS	 231
JavaScript	 232
Graphics	 233

Table of Contents

[ix]

Views system	 233
What is a view?	 233
Extending a view	 234
Overriding a view	 234
Template language	 234
Caching	 235
The viewtype	 235
Tools	 235

CSS framework	 236
Creating abstractions of common visual patterns	 236
Customizing objects through extension classes	 237

Adding external JavaScript and CSS	 238
Menu system	 238

Registering a menu item	 239
Rendering a menu	 240

Comparing theming in WordPress to Elgg	 240
Building a theme	 241

Plugin structure	 242
Layout	 244

Default layout	 244
Page header	 244
Page body layout	 244
Page footer	 245

Moving the search box	 246
Styling the sidebar module	 247
Moving the site menu to the topbar	 248

Creating a mobile theme	 251
Plugin structure	 252
Layout	 253
CSS	 253

Summary	 256
Chapter 10: Moving to Production	 257

Selecting a server	 258
Performance considerations	 258

Competing for resources	 258
Usage patterns	 259
General guidelines for server selection	 260

Hosting options	 260
Shared hosting	 261
Virtual Private Server	 261
Dedicated server	 262
Cloud hosting	 262
Hosting company selection	 262

Configuring a server	 263
Apache	 263

Table of Contents

[x]

PHP	 264
MySQL	 266
Cron	 267
E-mail	 268

Managing the site	 268
Backup	 269

Code	 269
Database	 269
Files	 270
Server configuration	 270
Restoring	 270

Log rotation	 270
Spam	 271

Registration	 271
Detecting spammers	 272

Web analytics	 273
Daily tasks	 273

Monitoring user registration	 273
Reviewing reported content	 273
Responding to feedback	 273
Community management	 274

Testing, upgrading, and moving a site	 274
Testing	 274

Mirroring the production site	 274
Test plan	 275

Upgrading	 276
Moving a site	 277

Performance	 278
Benchmarking	 278

Monitoring and data collection	 278
Stress testing	 279

Easy performance gains	 280
Advanced performance tuning and scaling	 281

Caching	 281
Multiple servers	 282
Resources	 282

Reporting bugs	 283
Steps to reproduce the problem	 283
Elgg or plugin?	 284
Reporting the bug	 284

Summary	 284
Appendix A: Developer's Quick Start Guide	 285

Overview of Elgg as a framework	 285
What is Elgg?	 286

Table of Contents

[xi]

Object-oriented or procedural?	 286
Does it use the Model-View-Controller pattern?	 286
Convention or configuration?	 286
Is it extensible?	 286
What template engine is used?	 287

A Model-View-Controller perspective of Elgg	 287
Overview	 287
Controllers	 287
Model	 288
Views	 289

Routing	 290
Code location	 290

Actions	 290
Code location	 290

Page handlers	 291
Code location	 291

Framework booting	 291
Code location	 292

Data model	 292
Entities	 292

Type and subtype	 293
GUID	 293
Owner	 293
Container	 293
Access	 293
Database	 294

Relationships	 294
Extenders	 294

Database	 295
Retrieval functions	 296
Code location	 296

Views	 297
View templates	 297
Page shells and layout	 298
View type	 298
Overriding and extending views	 299
Special views	 299
Code location	 299

Events and hooks	 300
Elgg events	 300
Plugin hooks	 300
Code location	 301

Table of Contents

[xii]

Plugins	 301
Initialization	 302
Plugin order	 302
Conventions	 302

Themes	 303
Code location	 303

Activity stream	 304
Code location	 304

Notifications	 304
Code location	 304

Internationalization and localization	 305
Code location	 305

Lightning round	 305
Authentication	 306
Caching	 306
Configuration	 306
Debugging and logging	 306
JavaScript	 307
Menus	 307
Private settings	 307
Search	 307
Security	 308
Session handling	 308
Unit tests	 308
Web services	 308
Widgets	 308

Summary	 309
Appendix B: Views Catalog	 311

Using views	 311
Page structure	 312

Shells	 312
Layouts	 313
Elements	 313

Topbar	 314
Header	 314
Sidebar	 314
Footer	 315
Owner block	 316
Status messages	 316
Comments	 317
Search box	 317

Components	 318

Table of Contents

[xiii]

Gallery	 318
Image block	 319
List	 319
Module	 320

Navigation	 321
Breadcrumbs	 321
Pagination	 321
Menus	 321

Topbar menu	 322
Site menu	 322
Page menu	 322
Footer menu	 323
User hover menu	 323
Entity menu	 323

Tabs	 324
Forms	 324

Input	 324
Access	 325
Buttons	 325
Checkboxes	 325
Date	 326
Drop-down selector	 327
File upload	 327
Hidden input	 327
Large textarea	 328
Password	 328
Radio buttons	 328
Textbox	 329
User pickers	 329

Output	 330
Date	 330
E-mail address	 330
Link	 330
Tag cloud	 331
Tags	 331
Text	 331

The form	 331
Users, groups, and objects	 332
Activity stream	 332
Likes	 333

Like this	 333
List users	 333

Widgets	 334
Administration	 335
Summary	 336

Index	 337

Preface
Elgg is a web application for social networking. It has all the features you
would expect from a social web application. It has blogging, file sharing, social
bookmarking, microblogging, activity streams, groups, "friending", user profiles,
and the list goes on. However, Elgg is more than just a web application. It can also
be used as a development framework for creating social websites. Developers are
building impressive social media sites on top of the Elgg engine through its powerful
API. They are using it to add social functionality to current websites and integrating
it with other popular web applications.

Elgg is open source, licensed under the GNU General Public License (GPL). You
can download, install, and use it without cost. Taking advantage of its plugin
architecture, there is a community of users and developers contributing plugins and
themes for others to use. Open source software and an open source community are a
great combination that everyone can benefit from.

Anyone can use Elgg to create a customized social networking site. Entrepreneurs
are building specialized social networking sites with it. Educators are using it as
an e-learning tool. Corporations are adding it to their intranets to better connect
their employees. There is a wide range of applications for Elgg and with it you have
complete control over your site and your data.

This book has two main objectives: help you understand what functionality Elgg
provides and explain how you can customize it to make it do exactly what you want.
It is not a manual for administering an active Elgg-based site, nor is it a manual for
users of Elgg sites. This book is all about using and customizing Elgg to build a
social website.

Preface

[2]

What this book covers
Chapter 1, Social Networking and Elgg: This chapter describes the features that drive
today's social networking and social media websites. It provides an overview of Elgg
along with a list of web resources focused on Elgg and its users. Also included is a
discussion of common uses for Elgg that go beyond the typical Facebook-like social
networking site.

Chapter 2, Installing Elgg: Before you can start using Elgg, you need to install it. This
chapter guides you through the process of setting up Elgg.

Chapter 3, A Tour of Your First Elgg Site: Nothing tells you more about software than
using it, and this chapter starts you on a hands-on exploration of Elgg's capabilities.
Topics covered include creating user accounts, setting up user profiles, and
administration.

Chapter 4, Sharing Content: Once you have your Elgg site up and running, you will
learn how to share content with Elgg. Blogs, bookmarks, files, and more can all be
shared using the core plugins that come with Elgg.

Chapter 5, Communities, Collaboration, and Conversation: This chapter shows you how
to use the group's capability to create virtual communities on your Elgg site. It
continues by describing the different tools available for users to communicate with
each other.

Chapter 6, Finding and Using Plugins: After reading about all the features that Elgg
has out of the box, you now get to extend it with plugins created by members of the
Elgg community. The chapter has an overview of installing, configuring, and testing
plugins followed by a detailed look at three major community plugins.

Chapter 7, Creating Your First Plugin: This chapter follows step-by-step as we create
a "hello world" plugin and introduce many components of Elgg's plugin API. This
chapter also offers advice on debugging a plugin when your code is not working like
you want it to.

Chapter 8, Customization Through Plugins: Learn how to customize Elgg through
creating your own plugins. This chapter is organized as nine lessons that teach you
different aspects of writing plugins.

Chapter 9, Theming Elgg: One of the best ways to impress potential users is through
the visual design of your site. This chapter describes how themes work and how to
create your own. To get the most out of it, you will need basic knowledge of HTML
and CSS.

Preface

[3]

Chapter 10, Moving to Production: Everything that you have done with your site so
far has been to experiment and understand Elgg, but now you are thinking about
opening it to the public. What sort of server do you need? How do you back up the
data? What do you do when the spammers find you? This chapter addresses these
kinds of questions.

Appendix A, Developer's Quick Start Guide: Elgg is a powerful development platform.
It was designed for extensibility, and developers can be very productive building
on it with a solid understanding of how Elgg works. This appendix provides an
overview of Elgg as a development platform. It gives you a big picture view of how
it works before you start writing code.

Appendix B, Views Catalog: This appendix is a visual catalog of Elgg's views. Along
with the description and picture of the view, it includes hints for developers and
themers on their uses.

What you need for this book
If you have a web hosting service that supports PHP, then you can install Elgg and
start exploring its capabilities. If you do not, then you can install a package like
XAMPP on any computer so that you can follow along as we use and customize
Elgg. Complete information on installing Elgg is available in Chapter 2.

Who this book is for
This book is written for people interested in using Elgg to build a social networking
or social media website. You may be evaluating Elgg for a possible project, in the
middle of using Elgg to create a site, or simply checking out open source web
applications for future use.

While the intended audience includes web developers, it is not written exclusively
or even primarily for developers. Those who build sites based on Elgg come
from a wide range of backgrounds and many do not have software development
experience. You could be an educator, entrepreneur, scientist, student, or waitress.
We do not assume that you have experience working with code, but certainly even a
little experience will help you as you work through the material in this book.

Elgg can be customized through configuring options and installing plugins. If
you want more control over Elgg, then it will require working with code. You will
not need years of experience in web development to benefit from the chapters on
writing plugins, but they will challenge those who are new to the PHP language and
web development.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " Next, we pass the content into elgg_
view_layout() through the associative array $vars."

A block of code is set as follows:

<?php
/**
 * Hello world plugin
 */

 elgg_register_event_handler('init', 'system',
 'hello_world_init');

 function hello_world_init() {
 // do nothing right now
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Enter your
settings and click on Save".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[5]

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

http://www.PacktPub.com/
http://www.PacktPub.com/support

Preface

[6]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Social Networking and Elgg
The Web has become social. Is today your birthday? Your family and friends are
posting best wishes right now on Facebook. Are you planning to go out for dinner?
You are likely checking user reviews of restaurants on a website such as Yelp. Did
you read that news article about the latest political scandal? If you did, you may
have discussed it with other readers in the comment section of the online news site.
The Web has always been a great place to find information, but increasingly people
are also using it for social interaction.

With this shift has come a new class of web applications focused on social
interactions like those described above. People are sharing and commenting on
photos and videos using sites such as Flickr and YouTube. They are updating their
"followers" on Twitter about their latest activities. They are using social networking
applications such as Facebook to reconnect with old friends, share information about
their lives with friends and family, or find people with common interests.

The rich interactions available on these social sites have raised the expectations of
users for web-based applications. It is not enough to search for and view interesting
content. People want to interact with it, comment on it, and discuss it with others.
Incorporating social features into a website leads to users spending more time on
the site.

The growth in usage of social functionality and social networking in particular, is
not limited to consumer websites. Many companies are using social networking
software on their corporate networks for internal collaboration. Employees can use
these tools to find expertise that exists within the organization and form groups that
promote sharing information across organizational boundaries. In education, social
networking applications are used to help students actively collaborate on projects.
Students can work together, share ideas, and discuss each other's work throughout
the learning process.

Social Networking and Elgg

[8]

Social features
As you have used social sites such as Facebook, YouTube, or Twitter, you may have
noticed features common to many of them. These features distinguish this new
generation of social web applications from the less interactive websites that came
before them.

Profiles
A profile lets users describe who they are. It can be as simple as a name and a few
vital statistics such as location and age or as elaborate as a complete listing of a user's
background, likes, dislikes, and interests. A profile usually includes a photo (often
called an avatar) that represents the user throughout the site.

Relationships
Social sites often let you "friend" or "follow" other users. These relationships define
who is in your social network and are often used to control access to content. For
example, a user may set the permissions on a photo so that only friends may see it.

Content sharing
Many social sites focus on sharing content; think Flickr, YouTube, or Blogger.
People not only share photos, videos, blogs, and files, but they also comment, rate,
and recommend.

Activity and notifications
With all this sharing and commenting, people need a way to keep track of what is
important to them. An activity stream that displays the latest activity relevant to a
user is one technique. A good example of this is the news feed in Facebook. E-mail
notifications are another common method for staying updated on what is happening.

Groups
Not only do people form relationships with other users, but they also join groups
organized around shared interests or purposes. These groups often mirror the
communities that people join outside of the virtual world of the web: alumni groups,
sports fans, book clubs, and charities. Social websites enable these groups to form
and thrive regardless of the location of the members.

Chapter 1

[9]

Communication
Social interaction on these websites is not limited to commenting and sharing
content. Encouraging communication between users is another important
attribute—whether in public such as a message board or discussion forum or
in private with real-time chat or e-mail-like messaging.

These are the types of features that are expected in today's websites. This expectation
has created a demand for frameworks and web applications that provide social
functionality. Solutions range from hosted social networking sites from providers
such as Ning, to sets of plugins that extend content management systems such as
Drupal and WordPress, to full application frameworks focused on social networking
such as Elgg. The end result is that it is easier than ever to create custom social
networking websites.

What is Elgg?
Elgg is an open source platform for building social websites, especially social
networking sites. Now that sentence may require some parsing, so let's start with
the fact that it is free open source software (FOSS). This means you are free to use it
however you want, free to modify it, and free to redistribute it. Its development is
managed by the nonprofit Elgg Foundation and developers from all over the world
contribute code to make Elgg better.

Elgg is used to build social websites. It has social networking in its DNA and
provides all the social features mentioned in the preceding section. Think of the
buzzwords that you associate with social media: blogging, sharing, tagging,
friending, or tweeting. Elgg does all of that.

Elgg is a platform that provides the building blocks for creating great social websites.
While you can install Elgg and immediately begin using it as a social networking
site, most of you will want to customize it. Those of you who are not developers
can download plugins to change the look and feel or add new capabilities. For the
developers, almost every part of Elgg can be customized by writing new plugins.

The recommended server configuration for running Elgg is called a LAMP stack.
This stands for Linux, Apache, MySQL, and PHP and is the most common hosting
environment on the Web. Linux is the operating system, Apache the web server,
MySQL the database, and PHP is the server scripting language. Elgg can also run on
other operating systems such as Windows or Mac OS X and with other web servers.

Social Networking and Elgg

[10]

With some basic experience setting up web applications, you can go from
downloading Elgg to having a functioning social networking site in 10 minutes.
After it is installed, you will spend time evaluating it, testing different plugins and
themes, designing your site, and building new plugins (if you are a developer). This
book serves as your guide to the process of creating a site like one of those shown in
the following screenshot:

The Elgg engine
The Elgg platform is divided into two parts: a core engine and plugins that extend
that engine. The engine contains the basic building blocks needed for a social
website. It also provides the framework for developers to create new social tools
through plugins. Here is a quick overview of what the Elgg engine does for your site.

Chapter 1

[11]

User management
The Elgg engine handles basic user account creation and management. Registration,
logging in, password resets, and e-mail address changes are all handled for you by
the engine. Elgg also supports external authentication so that sites can integrate user
accounts with other services. For example, there are plugins available that use this
capability to enable users to log in with their credentials from Facebook or Twitter.

Privacy controls
Users want to control who has access to their data and the Elgg engine does this
through a granular permission system. Every piece of content in Elgg has an access
level assigned to it. It could be a blog post, a video, or an individual profile element.
The engine gives users tremendous flexibility in who can see their data through
simple privacy controls and custom access lists.

Theming
The engine has all the hooks so that you can do anything from tweaking the default
theme to writing a completely new one. You have control over every line of HTML,
every layout, every CSS statement. Chapter 9, Theming Elgg describes how to theme
Elgg.

Social Networking and Elgg

[12]

Commenting
It is no fun to share your latest vacation photos without people commenting on
them. Elgg has a built-in commenting system that can be applied to any content in
the system, whether blogs, bookmarks, or videos. This is great for plugin authors
because they do not have to write any code to handle comments. It is also good for
you as the commenting system looks and works the same way throughout the site.

Tagging
A feature common to social sites is tagging. Tags are keywords attached to content.
When you click on a tag, it shows you all the content that shares that keyword. Elgg
has a common interface for tagging content—whether blog posts, files, or a user's
profile. The engine also makes it easy to create tag clouds.

Widgets
Widgets are draggable, customizable components that are often found on web
portals such as iGoogle or My Yahoo!. Many of the plugins that are distributed with
Elgg have their own widgets that can be placed on a user's profile page. The widgets
display members' latest blog posts, who they are friends with, or what groups they
have joined. Most social media sites provide bits of JavaScript that can be used to
create new widgets within Elgg. For example, there is a widget that displays a user's
latest tweets from Twitter.

Chapter 1

[13]

Internationalization
Your users may not all speak the same language and you might want your site to
support their native languages. The Elgg engine can load different language files
based on user preference. By default, Elgg's engine and the bundled plugins come
with English language files. People in the Elgg community have created translations
for languages ranging from German to Chinese to Basque.

Feeds
A challenge for any social site is how to keep people coming back. E-mail notification
is one popular technique that Elgg supports. Another option is providing RSS feeds
so that users can monitor activity on your site. The Elgg engine can turn almost any
page into a RSS feed. Do you want site-wide activity? There is a feed for that. How
about the latest posts in a group forum? There is a feed for that. Looking to stay
updated on the newest comments on a blog post? There is a feed for that, too. Just
look for the orange feed icon at the top of the sidebar menu or in your web browser's
location bar.

Social Networking and Elgg

[14]

Web services
A majority of Twitter's traffic comes from desktop and mobile clients. How does this
work? Twitter provides a web services API so developers can write applications such
as TweetDeck, which interfaces with Twitter. The applications can pull the latest
tweets out of Twitter and can post new tweets for the user. Elgg has a framework
for building web services APIs much like those of Twitter or Flickr. Think of all
the possibilities: desktop clients for notifications, mobile clients for sharing photos,
mashups that use your site's data.

The power of plugins
We just reviewed part of the functionality of the Elgg engine, but you probably
noticed that there was no mention of blogging, status updates, or other features
common to social networking sites. That is because these features are offered
through plugins. The plugins modify or extend Elgg giving you control over what
features are included in your site.

Bundled plugins
Elgg is distributed with a set of plugins which are written and supported by the
Elgg development team. These are called the bundled plugins. These plugins
provide enough functionality to run a basic social networking site and are a good
demonstration of what is possible using Elgg's plugin system.

The bundled plugins provide a wide range of functionality. Included are content
sharing plugins such as blogging, social bookmarking, and file sharing. There are
plugins for user profiles, activity streams, groups, and notifications. Integration
with Twitter, private messaging, search, and administrative tools are also provided
through these plugins. Detailed information on the bundled plugins is included in
Chapter 3, A Tour of Your First Elgg Site, Chapter 4, Sharing Content, and Chapter 5,
Communities, Collaboration, and Conversation.

Third-party plugins
As an open source project, Elgg has a community of developers who build plugins
for their own use and then share them with other Elgg users. These plugins are
referred to as third-party plugins and many are available from the plugin repository
on the Elgg website (http://community.elgg.org/pg/plugins). Some of these
plugins add significant functionality to Elgg such as a photo gallery or event calendar.
Others extend a bundled plugin or customize an aspect of the Elgg engine. There
are hundreds of third-party plugins available. Chapter 6, Finding and Using Plugins
describes a few of the best and gives advice on how to select and test any plugin.

Chapter 1

[15]

Themes
The look and feel of Elgg is controlled by the theme. Elgg comes with a default theme
that you can use. It is not a separate module that can be uninstalled, but is built into
the engine. To change the theme, you install a theme plugin that overrides parts or
the entire default theme. Theme plugins are installed just like other plugins and have
access to the same APIs. Chapter 9 provides information on where to find themes for
download, describes the components of a theme, and includes a guide to creating
your own.

Building your own plugins
You can build your own plugins to customize or extend Elgg. Writing a simple
plugin requires either basic knowledge of (or the motivation and persistence to learn)
both PHP and HTML. An example of a simple plugin is one that changes the word
"blog" to "report" in the blog plugin's menus and page titles. Creating a plugin that
does this is quite easy to write. There is a tutorial in Chapter 8, Customization Through
Plugins that shows how this can be done.

A more complicated plugin is one that modifies how Elgg handles the creation
of "friend" relationships. Elgg's default model is that any member can friend any
other member without requiring a confirmation. A one-way relationship is formed,
meaning that the fact that I am your friend does not imply that you are my friend.
This is consistent with Twitter's model of followers. For your social networking
application, you may want two-way relationships that require confirmation
as Facebook does. The plugin would hook into Elgg's engine and change the
relationship creation process. A reciprocal friendship plugin like this is available in
the Elgg community plugin repository.

With the right development skills, you could also write a plugin that adds a
significant new capability to Elgg or integrates Elgg with another open source web
application. Elgg's plugin API is quite powerful so the only limitations to what you
can build are your skills, time, and creativity.

Case studies
To get the creative juices flowing and as a demonstration of how Elgg can be used,
consider the following three case studies.

Social Networking and Elgg

[16]

Niche social network
James wants to create a social networking site for tango dancers around the world.
He wants his users to be able to upload tango music and playlists. They can upload
videos of tango dancing and rate them. Each city will have its own group where
members can discuss tango related activities. The groups should have a calendar
that lists the upcoming dances and a place for people to post photos of previous
events. James also wants to pull in posts by tango bloggers from outside his site
and redistribute them as a feed to make it easy for people to follow what people
are saying in the community. He, of course, also wants a slick theme that elicits the
emotion of the dance.

Designing and building the site
James has selected Elgg to run his site. As he looks through what plugins are
available, he sees that there is already a file sharing plugin with an extension for
playing MP3s in the page. He decides to rename the default blog plugin to playlists
so that people can create and comment on them. James is delighted when he sees a
video plugin that uses the Kaltura video site as the backend. This means the videos
will not be stored on his server, decreasing his storage requirements.

For the city-focused groups, he uses the Elgg group's plugin in combination with
plugins that provide an event calendar and a photo gallery. He likes that the gallery
plugin provides photo tagging and hopes that the tagging notifications gives people
a reason to keep coming back to the site. He still needs to figure out how to pull in
the blog feeds of tango bloggers. He finds a plugin that displays RSS feeds on user
profile pages, but it requires additional development to make it do exactly what
he wants. He happens to have a friend with PHP experience and with a little free
development help; he now has an aggregated tango blog feed.

With theming he has two choices: either download a free theme and modify it to fit
his needs or contract with a web designer to build one for him. James decides that
the visual interface is too important to skimp on and uses a freelance designer.

Deploying the site
The only step left is convincing people to use his site. James has been smart. By
resyndicating the blog feeds he has won the favor of the bloggers who now link back
to his site. He also recruited a few well known dancers from key cities to join. James's
final step is to contract a developer to create an invitational system plugin. Each
member gets a limited number of invites and the only way to join is to get an invite.
This helps to create a buzz about the new tango site.

Chapter 1

[17]

From this example, you not only see how James used Elgg but also that creating
and growing a social networking site is more than software. A common mistake is
spending a lot of time building a site and forgetting about the challenges of getting
people to use it.

Plugins mentioned
Four of the plugins mentioned are distributed with Elgg: file sharing, MP3 player
(zaudio plugin), blogging, and groups. The Kaltura collaborative video plugin by
Ivan Vergés, event calendar plugin by Kevin Jardine, the Tidypics photo gallery
plugin by the Tidypics team, and the Simplepie RSS feed plugin by Cash Costello are
all available from the plugin repository on the Elgg website.

Corporate intranet
Imagine a theoretical company called Acme Corporation. Acme has deployed
applications on their intranet to encourage collaboration among their employees.
They are using MediaWiki as their wiki and Sharepoint for file sharing. Management
and the employees are not satisfied with the current solution. They still feel
that it is difficult to find the right person with the right expertise for a project,
quickly organize ad hoc teams, or form communities of practice that cut across
organizational boundaries. They need software to tie together the current intranet
applications while providing the social functionality needed to address the
mentioned limitations.

Designing and building the site
The collaborative software team decides to create a prototype with Elgg to evaluate a
social networking solution. The first requirement is that the users need to be able to
log in using their Active Directory credentials. Fortunately, there is already a LDAP
plugin available and with a small amount of configuration, it is up and running. The
second requirement is supporting the formation of communities of practice. The
group plugin distributed with Elgg provides this capability and it is activated on the
development server.

Next, on the list is user profiles to help with the challenge of finding expertise. The
profile plugin that comes with Elgg has tagged profile fields, but the development
team felt they needed a more powerful and extensible profile capability. A third-party
plugin that extends the profile plugin to provide profile types and more customizable
profile fields was found on the Elgg community plugin repository.

Social Networking and Elgg

[18]

Integration with MediaWiki and Sharepoint are the remaining requirements.
Another organization released a MediaWiki plugin that pulls content out of the
wiki and makes it available within Elgg. That was a quick solution, but integration
with Sharepoint proves to be more difficult. After some research, they decide to
write a custom plugin to use Sharepoint's web services API. The developers end up
tying in updates on files in Sharepoint to the activity stream provided by Elgg. Now
users can get updates on anything that is happening in the wiki, Sharepoint, or Elgg
in one place.

A few of the developers have been using Twitter so they try out Elgg's
microblogging plugin. The team likes its ease of use and the ability to share quick
status updates, so they decide to include it in the production system.

Deploying the site
Before making the site available, the development teams decides to create accounts for
all the employees first. They write a plugin that extends the LDAP plugin that grabs
all the users from the Active Directory server, creates the accounts, and fills in some of
the profile fields. To speed adoption of the new application, particular communities
that would benefit from the groups capability are targeted. Very soon there is an active
group for Java developers with shared code snippets and discussion threads on unit
testing, distributed versioning systems, and many other topics.

Plugins mentioned
Core plugins mentioned were groups, the wire (microblogging), and profile.
The profile manager plugin by ColdTrick IT Solutions is available from the Elgg
community plugin repository. The MediaWiki integration plugin written by the
MITRE Corporation is also available there. The LDAP plugin is available from Elgg's
github account (https://github.com/Elgg).

Educational collaboration
Mr. Harris teaches middle school history and wants to use collaborative technology
for a group project idea that he has. He needs a web-based application that is simple
to set up and requires minimal configuration. Mr. Harris wants the students to break
up into teams, research a historical figure, and then create an online profile for that
person. The profile will include biographical information along with status updates
and blogs written from the perspective of the historical figure. He also wants the
students to use the site to collect resources and collaborate on the writing process.

Chapter 1

[19]

He decides the tools he needs are blogging, groups, bookmarking, and collaborative
document editing. Another requirement is that the students need to be able to access
it at home and school, but no one else on the Internet should be able to see the data.
One last requirement is that it must be cheap—preferably free.

Designing and building the site
Mr. Harris was recently at a conference on online collaboration in the classroom
and remembers Elgg being mentioned. As he looks through the plugins, he sees
all the tools that he needs. Blogging, groups, profiles, status updates, and social
bookmarking are all available.

The teams will use the social bookmarking plugin to save and share online resources.
The pages plugin will be used by the teams to collect the information they have
gathered, both Internet and book based, in one place before they create the profile
or write the blog posts. Mr. Harris likes that the pages plugin records who has been
working on each web page so that he can see who is contributing to it.

The last piece is making the site a walled garden so that only students and school
staff can log in and see the data. Fortunately, Elgg got its start in the educational
arena and has that feature built-in. Because Elgg is free open source software, Mr.
Harris was able to do all of this without any cost other than his time.

Deploying the site
The school IT staff installs Elgg on a server. Mr. Harris creates a spreadsheet with all
the students' information and uses an importer plugin to create accounts for them.
The experiment is a success. The students like working in an environment that feels
like Facebook and are comfortable using these types of tools. A few of the blog posts
that they wrote are quite entertaining.

Plugins mentioned
The pages, groups, blog, bookmarks, profile, and the wire (for user status) plugins
are all bundled plugins distributed with Elgg. The user importer plugin is available
from the Elgg github account.

Social Networking and Elgg

[20]

Elgg resources
There are many resources available on the Web to help you use Elgg. Most of these
live on the elgg.org domain that is run by the Elgg Foundation.

Elgg community
The Elgg community site (http://community.elgg.org) provides a place for
Elgg users and developers to interact. There are group forums where people can
ask questions and share expertise. The plugin repository at the community site has
hundreds of plugins that have been contributed by developers.

Elgg wiki
A great place to go for documentation on Elgg is the wiki at http://docs.elgg.org.
It covers the installation process, administering an Elgg site, and creating plugins
using Elgg's API. The wiki also contains a list of sites based on Elgg which can
provide inspiration on what is possible with Elgg. Remember that it is a wiki so you
can add to it.

Developer resources
The Elgg project uses Trac for bug tracking and managing release milestones
(http://trac.elgg.org). The latest development version of the code is found on
Github (http://github.com/Elgg). For Elgg developer community communication,
try out the Google group (http://groups.google.com/group/elgg-development)
and the Elgg IRC channel: #elgg on Freenode. To keep up with the latest efforts
of the Elgg development team, follow the blog at http://blog.elgg.org and the
@elgg Twitter account.

A few words of advice
Throughout the book there is practical advice gained from experience building,
developing, maintaining, and administering Elgg sites. Before you begin installing
Elgg in the next chapter, take a little bit of time to read the general, but important
advice below.

Take notes
As you work through the next few chapters, you will notice things that you would
like to change or add. Jot those down in your notes so that when you are done, you
have a list of possible customizations to prioritize.

Chapter 1

[21]

Save resources
As you try out Elgg, you are going to be using the resources listed above. You will
find interesting tutorials or hints about Elgg that you won't need to use at that
moment. Save links to those resources—whether through browser bookmarks or
web-based sites such as Delicious. In addition, as you browse the Web, you are going
to run across features or design elements that you really like on other sites. Save
those, so they can serve as inspiration as you design your site.

Be methodical
It is tempting to go to the Elgg community site, download 10 or 20 plugins, and
install all of them at once. This is not a good idea. If one of the plugins causes a
problem with your site, you will not know which the bad one is. It is better to
systematically install and test one plugin at a time. Chapter 6 walks you through the
process of finding, installing, and configuring plugins.

Finding help
Whether looking for guidance on how to do something or help fixing a problem, the
best first stop is the Elgg wiki. Do a search there or check out the FAQs. If you do not
find your answer, visit the Elgg community site. Search the forums to see if anyone
has asked the same question before. If not, select the group that best matches your
issue (often the Technical Support group) and ask your question. Be sure to use a
descriptive title and provide plenty of details.

Using Google search with the Elgg community site
The search built into Elgg is not bad, but is not nearly as powerful as
Google's search engine. You can search the Elgg community forums by
including site:community.elgg.org in your Google search query.

Summary
The growth of social networking and other social media sites will be a continuing
trend. Elgg is a powerful open source platform for building these types of websites.
The combination of the core social engine and the customization offered through
plugins provide the capabilities and extensibility needed for today's social websites.
This chapter was a quick introduction to what is possible with Elgg. The following
chapters give you hands-on experience with Elgg by guiding you through the
processing of installing and using this software.

Installing Elgg
It is time to create your first Elgg site. This will be a test site that you will use
throughout the book as we explore what Elgg can do. If you have installed web
applications such as Elgg before, the installation should only take a few minutes. If
you are new to this, it will take a little longer as you work through each step with the
assistance of this chapter.

To install Elgg, you need to:

1.	 Check that your server meets Elgg's requirements.
2.	 Download Elgg and put its code in the server's web directory.
3.	 Create a data directory and set its permissions.
4.	 Create a database for Elgg.
5.	 Run the web-based installer.

The instructions in this chapter work for a typical server. If there are complications
while performing the installation, use the Elgg wiki as a resource (docs.elgg.org)
for assistance. It has detailed information about server requirements, installing on
particular types of servers, and troubleshooting.

Preparing the server
Elgg is a server application, so you need a server to run it. Your server options fall
into three categories:

•	 Local server: If you are at school or the office, there may be a server already
configured with a web server that you can use for Elgg.

Installing Elgg

[24]

•	 Web hosting provider: A popular option is renting space on a server. The
hosting company handles the maintenance of the server, provides technical
support, and may even provide a one-click installer for Elgg. Chapter 10,
Moving to Production includes a section on selecting a web hosting package
when preparing to launch a live website.

•	 Home computer: You can use your desktop or laptop computer, whether it
runs Windows, Mac, or Linux. There are packages available for download,
like XAMPP, that include everything you need for running Elgg. This is a
great way to test out Elgg before you select a server for your site.

Platform specific instructions
There are detailed, step-by-step installation instructions specific to
your operating system on the Elgg wiki (http://docs.elgg.
org/Installation). They are a great resource for those who are
new to installing web applications.

Checking requirements
Now that you have identified a server, you need to confirm that it meets Elgg's
requirements (almost all servers meet these requirements):

•	 PHP scripting language version 5.2 or greater: Many hosting services will
list their PHP as version 5, but it is usually 5.2 or 5.3.

•	 Web server software that supports PHP and URL rewriting: For most
people this will be the Apache web server. The installer will check if
URL rewriting is working. (URL rewriting enables you to have short,
readable URLs such as http://elgg.org/profile/cash rather than
long confusing ones such as http://elgg.org/engine/handlers/page.
php?type=profile&user=cash.)

•	 MySQL database version 5 or greater: Elgg does not work with
other databases.

If you are not sure that your server meets these requirements, contact the technical
support of your hosting company or the administrator of your server. Additionally,
Elgg's web-based installer checks the requirements when you run it.

Downloading the latest version
The latest release of Elgg is available at the elgg.org website. When you go to
the site, look for the large download button. Clicking that button takes you to the
download page. You want to download the latest recommended release. The ZIP file
will be around 3 MB in size.

http://docs.elgg.org/wiki/Installation
http://docs.elgg.org/wiki/Installation
http://docs.elgg.org/wiki/Installation
http://elgg.org/blog/cash

Chapter 2

[25]

Extracting the files
Before moving the files to your server, you need to extract them from the archive.
If you are running a recent version of Windows or Mac OS X, you can double-click
the ZIP file to open it. Then, you can drag-and-drop the Elgg folder to wherever you
want to temporarily store the files. The location does not matter as long as you can
find it again.

Moving files to your web server directory
If you are using your own computer as a test server, you must copy the files into
Apache's web directory. For XAMPP, it could look like this:

If you are using a remote server, you need to FTP the files to the server. You will
need to know the username and password for your server account and will need an
FTP client. A great FTP client that runs on all the major operating systems is FileZilla
(http://filezilla-project.org/).

http://filezilla-project.org/
http://filezilla-project.org/

Installing Elgg

[26]

Start your FTP client. Your hosting provider should have given you information
on how to connect to your server including the address. Enter this information and
connect to the remote server. After you are connected, you should see file explorers
for both your local computer and the remote server. On the local side, navigate to
where you put the Elgg files and on the remote side, navigate to your web directory.

If you want Elgg in a subdirectory, copy the folder named elgg-1.8.0 to the
remote server. You can then rename the folder to get the address that you want.
For example, renaming the folder social would give you an address like http://
example.org/social/.

If you want Elgg in your base directory, then copy all the files and directories of
Elgg's main folder to your server.

http://example.org/social/
http://example.org/social/

Chapter 2

[27]

After you finish the transfer, check that there were not any failures (listed near the
bottom of FileZilla). If there were, try transferring those files again. Another option
is to FTP the ZIP file to the server and extract it there. The support staff for the server
can tell you whether that is possible with your account.

Configuring the server
There are three steps to configuring the server:

1.	 Set the root and engine directory permissions: The easiest way to run the
installer is to give the web server permission to write to Elgg's root directory
and the engine directory. Write down the current permissions on those
directories and then set the permissions to 777. Doing this gives everyone
with an account on the server (including the web server account) permission
to write there. As soon as the installation is finished, reset the permissions to
their original values. Don't forget!

2.	 Create the data directory: Elgg stores uploaded files like photos in this
directory. For security reasons, it is best to put that directory outside of the
server's web directory. If the web directory is /var/www, /var/data/elgg,
then it is a good location for example. A good hosting provider will let you
create a directory outside of the web directory. If you are using a shared
hosting account, you may have to put the data directory in your web directory.
See http://docs.elgg.org/Data_directory for instructions on this.

3.	 Set the data directory permissions: The web server needs to be able to create
directories and write files to the data directory. On a Windows computer, it is
unlikely that you need to change anything. With other operating systems, the
best option is to make the web server the owner of the data directory. If you
cannot do that, you will have to give everyone permission to write to it. You
should be able to edit permissions using the FTP client.

Understanding permissions
The Elgg wiki has a tutorial on permissions with further instructions
on setting the permissions of the data directory and changing the
permissions for the installation. So if you want to understand why
a permission of 777 gives everyone complete access to a file, visit
http://docs.elgg.org/Unix_Permissions_and_Elgg.

http://docs.elgg.org/wiki/Data_directory
http://docs.elgg.org/wiki/Data_directory
http://docs.elgg.org/wiki/Data_directory
http://docs.elgg.org/wiki/Unix_Permissions_and_Elgg
http://docs.elgg.org/wiki/Unix_Permissions_and_Elgg
http://docs.elgg.org/wiki/Unix_Permissions_and_Elgg

Installing Elgg

[28]

Create the database
The last step before running the installer is creating a MySQL database for Elgg to
store data. How you create the database depends on your server. If you are using
your own computer and a package like XAMPP, use the phpMyAdmin tool to create
the database.

If you are using a hosting service, they will provide a tool for creating a database.
The specific details vary per hosting service, but the general pattern is to log in to the
Control Panel, find the button or link for creating a database, fill in the Name of the
database, and click on the Add button. The tool may create a separate user account
in addition to the database. Be sure to record all of this information for later use. The
following is a screenshot from a popular hosting service's tool:

Copyright © GoDaddy.com, Inc.

Chapter 2

[29]

Run Elgg's installer
Once the server is configured and the database is created, you are ready to run
the web-based installer. The installer creates tables in the Elgg database, sets basic
parameters of the site like its name, and creates the administrative account. To
launch the installer, use your web browser to view your site. The URL depends on
the server and where you put Elgg's code. If you put the code in the root of your web
directory, this will be your main URL. If you put the code in a subdirectory, you will
need to add that to the URL. You should see the following:

Installing Elgg

[30]

There are six installation steps and each page will follow this same design with the
steps listed on the left and helpful links at the bottom. After clicking on the Next
button, the requirements checker runs and displays its results as shown in the
following screenshot:

In the preceding screenshot, the check of the web server's URL rewriting has failed.
This is the most common issue experienced by those installing Elgg and requires
some minor server configuration to fix. Hints are given in the red error message with
more detailed information available through the troubleshooting guide linked at the
bottom of the page.

Chapter 2

[31]

Install troubleshooting
There is extensive troubleshooting information on the Elgg wiki at
http://docs.elgg.org/Install_Troubleshooting. This is the
first place to seek help when experiencing a problem installing Elgg. To
recheck the requirements after a configuration change, click on the Refresh
button. If everything passes, you are ready to create the database tables.

Loading the database
This page asks for the information for the database that you created earlier. In most
cases, you will not need to change the defaults for the database host and table prefix.
Enter your settings and click on Save.

http://docs.elgg.org/wiki/Install_Troubleshooting
http://docs.elgg.org/wiki/Install_Troubleshooting

Installing Elgg

[32]

Configure Elgg
The next page asks for settings about your site. You should only have to set the name
of the site, the site e-mail address, and the data directory. Elgg is able to detect the
rest of the settings. The e-mail address is not your own, but the e-mail address that
you want notification e-mails to be sent from.

Chapter 2

[33]

These settings are not final. You can change them at any time after the installation
in the administration area of Elgg. We will discuss the administration area in more
detail in the next chapter.

Creating the admin account
The second to the last step of the installer is creating the administrative account. Be
sure to record your username and password. If your server does not have e-mail set
up, it is very difficult to reset a forgotten admin account password. After you have
entered the information, click on Next. This takes you to the last step, which is just a
message letting you know the site is ready to be used.

Installing Elgg

[34]

All done!
With the administrative account created, you are now ready to use the site. All you
have to do is click on Next and Elgg logs you into the site. The first page it takes you
to is the dashboard of the administration area. We will be taking a tour of this area in
the next chapter. If you want to see what the user-facing portion of the site looks like,
click on the View site link in the header.

Chapter 2

[35]

Summary
This chapter guided you through the installation of Elgg. With the site set up,
you are ready to start using it. The next three chapters help you explore what Elgg
can do and provide commentary that assists you in designing and building your
own Elgg site.

A Tour of Your First Elgg Site
Now that you have installed Elgg, it is time to get some hands-on experience. This
chapter takes you on a guided tour of Elgg, providing you with a broad overview of
what Elgg does. We describe how to create test users, fill out their profiles, and find
them some friends. The content sharing and communication tools are covered next.
We round out the tour with stops in user settings and administration.

Treat your site as a test site. You can create users, fill out profiles, try various site
settings, and delete users knowing that you can wipe the site and create another in a
few minutes.

While working through the tour, take notes on what you would like to change or
add. Those notes will be extremely useful when designing your site. This and future
chapters include design ideas and hints to help you start planning. You will find that
some customizations are easy to do (maybe by installing a plugin available in Elgg's
community plugin repository). Other modifications will require development skills
and knowledge of Elgg's plugin system.

Topics covered in this chapter include:

•	 User registration and profile creation
•	 Activity streams
•	 Sharing content through blogs, bookmarks, files, and microblogging
•	 Configuring user settings
•	 Administering an Elgg site

This chapter is an orientation to Elgg and so does not spend a lot of time
on any one part. The next two chapters cover each of the contenting
sharing plugins mentioned here in much more detail. Then Chapter 6,
Finding and Using Plugins explains how to find and install plugins so be
sure to read that before you begin downloading new plugins.

A Tour of Your First Elgg Site

[38]

Getting around
After you installed Elgg, you probably took a look around and noticed that there
is a user area and a separate administration area. Each area has its own theme.
The link to switch between the two areas is at the top of the page and is only
available to administrators.

The web pages have a consistent layout throughout the site. The following is a
screenshot of a sample web page with each component labeled. These component
labels are used throughout this book.

•	 Topbar: The aptly named topbar is located at the top of the page and is used
for navigation.

•	 Header: The site name or logo is located below the topbar in the header. A
site menu for navigating to Elgg's different tools is also in the header.

•	 Content Area: Most pages have two columns with the content in the
wider column.

Chapter 3

[39]

•	 Sidebar: The narrow column on the right has a menu specific to a particular
area of the site. For example, on a blog page the sidebar menu has links for
viewing and interacting with blogs.

•	 Footer: At the bottom of the page is the footer. It often contains another site
navigation menu or links to site specific pages such as a contact form or a
privacy statement.

This is the default layout of Elgg and can be customized as detailed in Chapter 9. If your
Elgg site does not look exactly like the screenshots in this book, do not be alarmed. The
developers of Elgg tend to redesign the default theme of Elgg after every two or three
major releases, but the underlying functionality should be very similar.

Registering users
Before we can test Elgg's social networking capability we need to add test users to
our site. The link to the registration page is found on the Log in box on the front page
of the site (which is only displayed when you are logged out).

The default registration process for Elgg consists of three steps:

1.	 Fill out the registration form.
2.	 Receive an e-mail with a validation link.
3.	 Click the validation link to confirm the e-mail address belongs to you.

The validation process assumes that your server is properly configured for sending
e-mail. If this is not the case, users can be manually created in the administration
area. This is also the quickest method for creating users because it skips the
validation step. In order to manually create a user, switch to the administration area
and find the Add New User link on the sidebar under Administer | Users.

A Tour of Your First Elgg Site

[40]

Multiple test users
The best way to test the social functionality of Elgg is by controlling
multiple test users at a time. This is possible if you have more than one
web browser on your computer. One user could be logged in using
Firefox, another with Chrome, and so on until you run out of web
browsers. Testing will proceed more quickly as you will not need to
constantly log in and out of different user accounts. It is also important
to test with users who are not administrators so that you see what your
users will see.

Later in the chapter, we will explore the administration area. There you can turn off
the user validation plugin or turn off registration completely.

User profiles and avatars
Each user has a profile page that includes an avatar, profile information, and
widgets. A user's profile is reached by clicking on the user's avatar anywhere in the
site. Users can navigate to their own profile by clicking on the mini avatar in the
topbar next to the Elgg logo.

Chapter 3

[41]

Profile information
To add some information to that very empty profile, click on the Edit profile button.
Elgg comes with a default set of profile fields already defined. Some fields are tags
like Interests and Skills. Clicking on one of these tags leads to a web page that lists
users who share that interest or skill. Other fields are links to web pages or plain
text boxes.

A Tour of Your First Elgg Site

[42]

Profile field permissions
Did you notice that each profile field has a drop-down menu underneath
it? Elgg has a robust permissions system so that users can control who
has access to content. Whether it's a blog post, uploaded file, or a profile
field, the creator of the content gets to decide who can see it.

Avatar
Users are represented throughout the site by an avatar (also called a profile icon).
The avatar appears next to comments, forum posts, or any other content posted by a
user. A user sets the avatar by clicking on the Edit Avatar link underneath the avatar
on the profile page. The user selects an image from their computer and uploads it to
the server. Then Elgg's handy cropping tool is used to select a particular region for
the avatar.

Chapter 3

[43]

An important feature that many people new to Elgg miss is that the avatar has its
own drop-down menu. This menu includes commonly used links. To try it, move
your mouse cursor over a user's avatar and click on the small arrow icon that
appears over the avatar.

Profile widgets
Users can not only set their profile information and avatar, but they can also
configure widgets for their profile. Widgets are small web elements that display all
kinds of content: a list of friends, blog posts, group membership, YouTube videos,
MP3 players, and more. The following is an activity widget that lets viewers know
what a user has been doing on the site:

A Tour of Your First Elgg Site

[44]

In order to add a widget, click on the Add widgets button on the top right of the
profile page. Next, click any of the widget buttons to add it. Once the widget has
been added, it can be moved to any of the three columns by dragging it by its title.
Clicking on the Add widgets button again hides the widget selection panel.

Each widget has its own settings that can be accessed by clicking on the edit link
on the title bar of the widget. For example, the Friends widget has settings for the
number of displayed friends, the size of the icons, and who can view the widget.

When you are done adding and configuring the widgets, the empty look of the
profile page will have been replaced with interesting information about the user.

Chapter 3

[45]

Friends
As Elgg is a platform for building social networking sites, forming relationships
is an essential capability. These relationships are called "friends" on Elgg, similar
to Facebook, but they work more like "followers" on Twitter. It is a one-way
relationship and does not require confirmation by the person being "friended".

A user can add a friend by visiting a person's profile and clicking on the Add friend
link. The drop-down menu on a user's avatars can also be used to add friends. The
user who is being "friended" is notified by an e-mail. Removing a friend works the
same way except that the user is not notified.

A Tour of Your First Elgg Site

[46]

A good place to look for other users is on the Members page. Navigate to this page
by using the More tab in the site menu.

The members list can be sorted, by when people joined the site, who has the most
friends, and who is currently online. The members page also has two search boxes:
one for searching by profile field tags such as interests and location and the other for
searching by name.

Users can also invite people they know to join the site from Elgg. This is a great
way to grow a site since your users are recruiting new members for you. The Invite
friends link is on the sidebar of the Friends page, which is reached by clicking on the
friends icon in the topbar.

Invited people receive an e-mail with a personalized message and a link to join the
site. When an invited person joins, the two users are automatically made friends.

Chapter 3

[47]

Activity stream
A great way to see everything that is happening on a site is Elgg's activity stream.
The stream includes short snippets of information on what the members of the site
are doing. The page has tabs so that users can choose between seeing everyone's
activity, just their friends' activity or their own. They can also filter by content type
(for example, only blog posts). The activity stream respects the permission settings
on content so that if a user sets a blog post to be for friends only, that blog post only
appears in the activity stream of those friends.

These types of pages are very important for social sites because they make the site
appear alive with activity, and they can help people find interesting content that they
might have missed otherwise. For many users, this is the first page that they check
after they log in.

In additional to viewing content, users can also interact with the content in the
activity stream. On the right of many items is a thumbs up icon for "liking" the
content. If an item has been liked by at least one person, a count is displayed.
Clicking on the count displays a list of users who have liked the item. Another kind
of interaction supported is responding to the content on the activity page. The speech
bubble is a link for adding a comment or replying to a forum post.

A Tour of Your First Elgg Site

[48]

Tools
Elgg includes a set of tools for sharing content, collaborating, and communicating.
Each tool is provided by a plugin. This section gives a quick overview of these
tools while Chapter 4, Sharing Content and Chapter 5, Communities, Collaboration, and
Conversation cover the tools in greater detail.

Blogs
Elgg has a basic blogging tool that is very easy to use. Users can write blog posts
and comment on them. The tool supports saving drafts, embedding photos, adding
tags, and optional commenting. An editor for marking text as bold or creating lists
is available. A user can also select from categories defined by the Site Administrator.
When a user publishes a blog post, it appears in the activity stream and notifications
are sent out.

Chapter 3

[49]

We have already mentioned that much of the functionality that is visible to users is
provided by plugins. This description of the blogging tool includes features supplied
by the following plugins: blogs, categories, embed, and TinyMCE editor. The last
three plugins integrate with most of the tools in this section.

Bookmarks
Social bookmarking enables users to share links to websites with each other.
Delicious, Digg, and Reddit are examples of social bookmarking sites on the Web.
Just as with the other content sharing tools, commenting, tagging, and notifications
are supported.

A Tour of Your First Elgg Site

[50]

Files
Users can upload and share any kind of file with this tool: Word documents,
Excel spreadsheets, photos, audio files, and videos. The icons assigned to each file
correspond to its type and the tool also creates a categorized list of files by type in
the sidebar.

Groups
The groups tool is the most popular tool in Elgg as it makes it easy for users to form
virtual communities. The communities often organize around a shared interest,
background, job, or purpose. As an example, on a social networking site for sports
fans, people might form groups focused on their favorite team.

A group gets a set of tools to encourage collaboration and communication: blog,
bookmarking, file sharing, forum, and pages. Other tools can be added through
plugins. The group profile page, shown in the following screenshot, provides a quick
overview of what the group is about and what has been happening in it.

Chapter 3

[51]

The owner of the group can invite members of the site to join the group. The owner
can also set the group to be closed, which means that members must be invited in
order to join. As with content created by individuals, group content shows up in
activity streams and generates notifications for group members.

A Tour of Your First Elgg Site

[52]

Pages
The pages tool lets users collaboratively edit a web page of content. It works a lot like
a wiki without requiring the use of wiki markup (which many people have trouble
using). Instead of wiki markup, the same editor that was used for blogs is available
for editing the pages.

The creator of a page decides who has permission to edit the page and who can view
it. Every time a page is saved a revision is created so that users can look at the history
of changes.

Chapter 3

[53]

Messages
A private messaging capability is provided by the messages tool. With it, users can
send messages to their friends on the site. It works just like e-mail without requiring
the users to know each other's e-mail address.

The wire
The wire is a microblogging tool similar to Twitter. Users can post messages of up
to 140 characters. Using the Twitter API plugin, distributed with Elgg, it is possible
for users to have their wire posts also pushed to their Twitter accounts. Chapter 5
provides instructions for configuring this.

A Tour of Your First Elgg Site

[54]

User settings
Users can configure their accounts in the Settings area of Elgg. A link to this area is
always present in the topbar for easy access. Once in the settings area, users navigate
to the various pages using the sidebar menu.

Your settings
The Your settings page has basic account options for e-mail address, password,
and language. If an e-mail address is changed by a user, a validation e-mail is sent
to ensure that the user owns the new e-mail address. English is the only language
distributed with Elgg, but adding additional languages is discussed in Chapter 6.

Chapter 3

[55]

Tools
The Tools page is a place where plugins can add configuration options. The only
plugin distributed with Elgg that has a user-configurable setting is the Twitter API
plugin. We describe in Chapter 5 how to enable and configure it.

Notifications
Users have a suite of notification settings available to them. Users can control what
they are notified about and how they receive the notifications. These settings are
divided into two pages: one for users and one for groups.

A Tour of Your First Elgg Site

[56]

The first section of the user notifications page is for users to control how they receive
notifications on their own content. For example, when a comment is left on one of
their blogs, they can receive the notification through e-mail, through the private
messaging tool, or not at all.

The next two sections deal with controlling notifications based on the activity of
friends. By default, users do not receive notifications on the activity of their friends.
To enable these notifications, users can activate notifications for all friends in the
middle section or select individual friends at the bottom of the page.

The group notifications page works like the user notifications page. Group
notifications are turned off by default just like friends-based notifications. When a
user turns on notifications for a group, the user receives an e-mail or private message
whenever there is a forum post or a user shares content with the group (such as
creating a blog, bookmark, file, or page).

Administration
The administration area of Elgg is reached by clicking on the Administration link
in the topbar. You entered this area after completing the installation of Elgg. The
primary page is a dashboard that each administrator can customize with widgets.

Chapter 3

[57]

The sidebar menu is the primary mode of navigation. It is divided into two main
sections: Administer and Configure. Pages that are used on a regular basis as an
administrator monitors the site are in the Administer section. The Configure section
has pages that deal with settings and plugins. An administrator uses these pages
often when setting up a site, but only occasionally afterwards.

Now is a great time to familiarize yourself with the different menu items. For example,
advanced site settings are located at Configure | Settings | Advanced Settings. On
this page you can configure Elgg to run a private network, which means that only
those who are logged into the site can see any content. If your site is on the Internet,
you may want to turn off user registration while you test the site. This protects you
from spammers joining the site during this testing phase. (Chapter 10, Moving to
Production has more information on stopping spammers.) If you see a setting you
do not understand, it is best not to modify it. Instead, try the convenient links in the
footer to read documentation or interact with other people working with Elgg in the
community forums.

A Tour of Your First Elgg Site

[58]

Activating plugins
Most of Elgg's functionality is provided by plugins, which can be activated by going
to Configure | Plugins. There is extensive information in Chapter 6 about finding
plugins, evaluating their quality, and configuring them. For now go to the plugin
page and activate the site-wide categories plugin, which is covered next.

Site categories
Categories are set by an administrator for the entire site. Users can select these
categories when they share content—whether blogs, bookmarks, files, or pages. The
categories are defined through a comma-separated list of category titles.

Chapter 3

[59]

Custom profile fields
The administrator can customize the profile fields available to users using the Edit
Profile Fields page (Configure | Appearance | Edit Profile Fields). Each profile
field has a label and a type. The type determines what kind of information can be
entered for a profile field. To enter large amounts of text, select the longtext field. For
a comma-separated list of tags, use the tags field. After creating a new set of profile
fields, they can be ordered by dragging the arrow icon next to each field. Chapter
6 includes a section on a community-contributed plugin that supports additional
profile field types and allows administrators to group the fields into sections.

Default widgets
Your test users did not have any widgets on their profile pages when they logged
in for the first time. This is an uninviting introduction to the site. To prevent this,
administrators can set the initial widgets for a new user's profile page. This is done
on the Default Widgets page available at Configure | Appearance | Default
Widgets. The interface for selecting and arranging the widgets is the same drag-and-
drop tool used on the profile page.

A Tour of Your First Elgg Site

[60]

The best way to decide how to position the widgets is to try out different
arrangements on your own profile to find what works. After the widgets are set on
the administrative page, new users will get those widgets automatically when they
register. Users that already existed on the site do not get the widgets.

Site pages
One of the most requested features by Elgg administrators was a tool for creating
static web pages. With the external pages plugin activated, administrators can create
common web pages like an about page or a page with the site's privacy statement.
To try this out, select the Site pages sidebar link under Configure | Appearance and
use the editor to design a page.

Chapter 3

[61]

Links to the pages automatically appear in the site's footer as shown in the
following screenshot:

Reported content
Sometimes users do things they should not do. This includes posting a photo that
is not appropriate for the site or starting a flame war in a discussion forum. A busy
site has too much activity for an administrator to keep track of everything that
is happening. Fortunately, Elgg comes with a plugin that allows users to report
inappropriate content to the administrator. On most pages, there is a whistle icon in
the footer with a link labeled Report this.

When users click on the link, they fill out a description of the problem and submit
the report. Administrators view the reports on the reported content page and can
take whatever action is appropriate, including banning or deleting the user.

Customizing your site
Now that you have completed a tour of your site, now is a great time to consider
some possible design decisions. You probably have a set of requirements for your
site or at least a general idea of how you would like it to work. As you worked
through this chapter, you may have written down features that you would like
to add or change to satisfy those requirements. If not, we have included a list of
customizations that are often requested or discussed in the Elgg community forums.
They can serve as examples to make you start thinking about your site. Many of
them are already available as plugins that you can download and install.

A Tour of Your First Elgg Site

[62]

Ideally, you should have a list of possible customizations ready before you
read Chapter 6. That chapter describes the process of customizing an Elgg site by
installing plugins. In it, you will learn how to find plugins, evaluate their quality,
and install them on your site. If you are a developer (or are interested in learning
a little web development), Chapter 7, Creating Your First Plugin and Chapter 8,
Customization Through Plugins contain tutorials on building your own plugins.

User registration and authentication
•	 Adding registration fields: Additional fields can be added to the registration

form. These fields can also be linked to the user profiles.
•	 Import users: A teacher may want to import a list of students to populate the

accounts rather than having them manually sign up.
•	 External authentication: Plugins exist for using already existing

usernames and passwords. Common services of this type include LDAP,
ActiveDirectory, and Shibboleth.

Widgets
•	 Fixing the widget layout: Some site administrators want a consistent layout

of profile widgets rather than giving the users control.
•	 Push a new profile widget: Rather than having users discover that a new

widget has been added to the catalog, push the new widget to everyone's
profile automatically.

Friendship model
•	 Reciprocal friendships: Instead of Elgg's one-way friendships, make all

friendships two-way.
•	 Confirmation: Friend relationships are not formed until the person being

"friended" confirms it.
•	 Rename "friends" to "followers": On a corporate intranet site, "following" or

"colleagues" terminology is usually more appropriate than "friends".

Roles
•	 Moderators: Special user accounts with the ability to edit or delete content

without access to Elgg's administration area. Elgg is currently limited in its
support for roles. There has been work on group-only administrators but
very little progress in the area of site-wide moderators.

Chapter 3

[63]

Help and support
•	 Help pages: Every site needs documentation on how to use the site as well as

answers to common questions.
•	 Feedback: Give users the ability to ask questions, report problems, or offer

suggestions to improve the site.

Summary
This chapter guided you on a tour of your Elgg website. Along the way you created
test users, found friends, set up user profiles, adjusted settings, and used Elgg's
administration area. You also got a taste of Elgg's major tools such as blogs and
groups. These tools are the focus of the next two chapters. As we continue to explore
Elgg's capabilities, further design hints and questions will be pointed out to prepare
you for customizing your own site.

Sharing Content
People use social networking and social media sites to share things: photos, videos,
family news, and more. This chapter covers the four major tools for sharing content
that are distributed with Elgg:

•	 Blogs
•	 Bookmarks
•	 Files
•	 The Wire

We saw a quick overview of them in the previous chapter, but now we dig in and see
what they can do. The tool reviews are broken down into four sections:

•	 Creating and uploading content
•	 Finding, viewing, and commenting on content
•	 Exploring use cases for the content sharing tool
•	 Possible customizations of the tool

A common mistake when designing and building a website is focusing on adding
as many features as possible. A better approach is to develop short scenarios that
explore how your users might interact with Elgg. These use cases help you focus on
the features that matter, leading to a better design. The sample use cases included
in this chapter are very short vignettes that relate to a particular application of Elgg
(e-learning tool, organization intranet application, and niche social network). You
can expand upon them or create your own that fit your audience and application.

Sharing Content

[66]

There are many different ways to customize Elgg. To give you a sense of what is
possible while designing your site, we will show several customizations that are
commonly requested for these content sharing tools. All of them can be implemented
through plugins. In some cases, the plugins are already written and are available
in the Elgg community plugin repository. We cover finding and using plugins
in Chapter 6 so keep notes on possible customizations that you can refer to when
working through that chapter.

Blogs
Whether users want to share their thoughts on the latest political scandal, describe
a recent vacation, or announce important news to their friends, Elgg's blog tool
makes it quick and easy. All it takes is filling out the title, writing the body, and
clicking on Publish.

The features available from the blog plugin and the other bundled plugins include:

•	 WYSIWYG editor
•	 Saving drafts
•	 Preview a post
•	 Tags and categories
•	 Privacy control
•	 Embedding photos or links to files
•	 RSS feeds
•	 Commenting
•	 Liking blog posts

WYSIWYG
WYSIWYG stands for What You See Is What You Get. As you type and
format the text on a WYSIWYG editor, you see what the text is going to
look like when published. Without this kind of editor, you would need
to mark up the text like this to achieve bold text:
This is bold text and this is normal text.

With Elgg's editor it only takes a few clicks of the mouse to make
text bold or italicized, create a link, or add a bulleted list. The editor
is provided by the TinyMCE plugin distributed with Elgg. It is used
throughout Elgg for editing and formatting text.

Chapter 4

[67]

Creating a blog post
To create a blog post, select the Blogs tab from the site menu and click on the Add
blog post button just under the site menu. You will see a form like that shown in the
following screenshot. The title, an optional excerpt, body, and tags are entered in the
main content area with controls below. If the categories plugin is turned on, the form
also has check boxes for the categories that you set in Chapter 3.

The excerpt is displayed on pages that list many blog posts. The excerpt serves as a
summary or teaser to encourage people to click on the link and read more. If a user
does not enter text for the excerpt, Elgg uses the first few sentences of the post.

There are controls for setting the access level of the post, for determining
whether comments are enabled, and for setting the post publication status.
A draft is automatically saved every five minutes while it is being written. A user
can also set the status to Draft and click on the Save button to ensure that the latest
changes are preserved.

Sharing Content

[68]

Power users with HTML knowledge
Know HTML? You can click on the Remove Editor link above the
body of the blog post and edit the raw HTML of the post.

For those who prefer seeing what a blog post will look like before publishing it,
the post can be previewed while in draft state. This gives a user the opportunity to
change some text or modify the formatting before making the post available to read.

Embedding photos and files
The WYSIWYG editor supports inserting images from the Internet, but what if a
user wants to upload an image and embed it in the blog post? An embed plugin
is distributed with Elgg that does just this. Click on the Embed content link above
the body of a blog post and a dialog window pops up. This window has two tabs:
one for files that have already been uploaded with the files tool and another for
uploading new files.

Chapter 4

[69]

If an image is embedded, the image appears in the post. If another type of file is
embedded, a link is inserted into that file's page. To change the size of the image
or its position in the post, click on the image and then on the image button in the
WYSIWYG editor's toolbar (it looks like a picture of a tree).

Publishing
Publishing a blog post results in notifications being sent to the user's friends and an
entry being added to the activity stream about the post.

Finding and viewing
Users will not write many blog posts if people are not commenting on them. Before
users can comment on a post, they have to know it exists. Notifications and activity
streams are two ways for users to discover blog posts. Elgg also provides a list of
recent posts, RSS feeds, profile widgets, and a search engine.

Sharing Content

[70]

Search
The search box is on the far right of the topbar as shown in the following screenshot:

When a search query is entered, the search is performed over all the content on the site
and the results are presented in a list broken down by content types. In the following
example, the search results are divided by blog posts, bookmarks, and files:

Blog posts with the search term in its title or body appear in the results. There is also
a link at the bottom of the sidebar to select content that has been explicitly tagged
with the search term.

Lists of blog posts
Users are taken to a list of their blog posts when they select Blog from the Tools
menu. This page includes summaries of their recent blog posts with links to the
full posts.

The following screenshot shows that the latest comments on the blog posts are
included in the sidebar:

Chapter 4

[71]

Other lists available from the tabbed menu are blogs written by friends and all
blogs on the site. Not shown in the preceding screenshot, blogs are also available in
monthly archives.

RSS feeds
Those lists are also available as RSS feeds. An RSS feed contains the latest 20 posts
for a particular list. A user can follow an RSS feed by clicking on the orange RSS icon
near the top of the sidebar.

What is RSS?
RSS (Really Simple Syndication) is a format for publishing regularly
updated web content. The content is formatted to make it easy for
computers to process and keep track of what has changed. Rather than
continually checking a website using a web browser for new content,
you can use software to tell you when there is new content and track
what you have read. An example of such software is Google Reader, a
popular web-based tool for reading RSS feeds.

Most web browsers also have an orange icon that lights up when they detect an RSS
feed in a page. Clicking on the icon subscribes the viewer to the feed. The following
screenshot is an example of the orange icon in Firefox's address bar:

Sharing Content

[72]

Widget
The blog tool provides a widget for users to put on their profiles. Users can control
how many blogs are displayed through the widget's settings.

Commenting
Once users find interesting blog posts, they will want to interact with the author
through comments. When a comment is posted, the author receives a notification
of the comment (assuming the author has notifications enabled). The comment also
appears in the activity stream, letting people know that this might be a blog post
worth reading. Just like the list pages, an individual blog post page has an RSS feed.
It contains the latest comments on the post.

Chapter 4

[73]

Use cases
•	 A communication tool for managers: A manager uses a blog to keep her

group updated on the internal news of the corporation. These blog posts do
not require getting everyone into a room at the same time for a meeting and
allow for public discussion in the comments area. The manager is also able
to set the access level on her posts so that only members of her group can
read them.

•	 Book reports: Students are writing persuasive essays. Each draft is a separate
blog post giving the teacher and other students the opportunity to comment
on the essays as they develop.

•	 Site news: The owner of a site writes about new features that will be rolled
out and points out exciting activity on the site. The blog posts are featured
prominently on the front page of the site. This not only provides an easy
means of communicating with the users but also demonstrates one of the
site's tools.

Customizations
When building a website with Elgg, most people want to add to or change the
existing features provided by Elgg and its bundled plugins. We list a few common
customizations below to get you thinking about your site. Most of these are already
available as plugins in the Elgg community plugin repository. We discuss finding
and evaluating these community plugins in Chapter 6. Custom plugins provided the
greatest amount of control, tailoring Elgg to your needs.

•	 Syndicate blog from external source: Your users may already have blogs on
other sites. They might want your site to republish their posts automatically.

•	 Insert embed codes from YouTube: Users may want to embed videos from
video sites into a blog post. By default, Elgg strips these embed codes from
posts as a security precaution. A plugin could accept these embed codes from
particular trusted sites and filter out the rest.

•	 Change the name from blog to poems: On a poetry site, the blog tool works
well as a poetry publishing platform. The name of the tool just needs to be
changed. This is demonstrated in Chapter 8.

•	 Moderate comments: You may want to moderate comments or blog posts
before they are published.

Sharing Content

[74]

Bookmarks
Upon finding an interesting website, many people do two things: bookmark it with
their web browser and email it to their friends. Social bookmarking improves on this
by storing the bookmarks on the web where they are available from any browser, not
just the one used to bookmark the site. These social bookmarking websites also make
it easy to share the bookmarks with other people. Elgg's social bookmarking tool
works the same way so that users can save and share bookmarks.

Features offered by the bookmarks plugin and other bundled plugins include:

•	 Manual bookmark creation
•	 Bookmark icon for internal pages
•	 Bookmarklet
•	 Tags and categories
•	 Privacy control
•	 Commenting
•	 Liking

Adding a bookmark
On any of the bookmark list pages, there is a button in the top right of the content
area for manually adding a bookmark. When creating a bookmark, a user enters a
title, website address, an optional description of the site, any tags, and the access
level. Before saving the bookmark, the user also has the opportunity to send the
bookmark to friends. The friends are selected using the same tool that was used to
turn on friend notifications in Chapter 3. When the bookmark is saved, it appears in
the inboxes of the selected friends. Notifications are also sent and the activity stream
is updated.

Chapter 4

[75]

You may have noticed a push pin icon at the top of the sidebar. When a user hovers
over the icon, a tool tip appears as shown in the following screenshot. (The visual
appearance of the tool tip depends on the browser and desktop theme).

When a user clicks on this icon, the page being viewed is bookmarked. Elgg fills out
the title and the address for the user. This makes it easy for users to store interesting
pages from your site and share them with others.

Sharing Content

[76]

Bookmarklet
A little known feature of the bookmarks tool is its bookmarklet. This is a button that
can be dragged from the Get bookmarklet page to the bookmarks toolbar of a user's
web browser. When visiting an interesting site, a user can click on the button and
be taken to the Elgg bookmark creation page with the title and address of the site
already filled out.

Chapter 4

[77]

Viewing
The bookmarks tool provides viewing functionality similar to the blogs tool.
Users get lists of their bookmarks, their friends' bookmarks, and all the bookmarks
on the site. Each of these lists has an RSS feed so that users can stay updated on the
latest bookmarks.

There is also a widget so that users can display their latest bookmarks on their
profiles. Just like the blog widget, the number of bookmarks displayed is a
widget setting.

Sharing Content

[78]

The page for displaying a bookmark looks similar to a blog post page except that
there is a large link to the bookmark above the description text.

Use cases
•	 Literature or vendor search: Your team at work has been assigned to find

the best software package for managing an inventory. Rather than emailing
around links, the team uses the Elgg bookmarklet to quickly bookmark and
share vendor sites with each other. The comment sections are used to discuss
features, advantages, and drawbacks before the information is summarized
in a formal report.

•	 Students bookmarking resources for reports: Each student has been
assigned a country and is asked to write a report about an important
news story in that country. The students are asked to contrast the local
coverage of the story with the world coverage. The first step is finding news
resources on the Web. While bookmarking the websites, the students use the
description field to summarize the content and the comment area to provide
commentary, creating an online annotated bibliography in the process.

Chapter 4

[79]

File
Users can share any kind of file with the file tool. This provides a simple interface for
uploading and describing files. It is also integrated with Elgg's notifications, activity
stream, and commenting system.

The file plugin and the other bundled plugins provide these features:

•	 Supports any file type
•	 Audio player
•	 Tags and categories
•	 Privacy control
•	 Commenting
•	 Liking

Uploading a file
Before uploading a file, a user fills out information about the file. The file is selected
from the user's computer using the web browser's file chooser. When the user clicks
on the Upload button, the file is uploaded to the server. This can take some time
depending on the size of the file and the speed of the Internet connection. Once the
upload is complete, Elgg stores the file on the server and assigns an icon to it based
on the file type. Notifications are sent out to the user's friends and the activity stream
is updated with information about the new file.

Sharing Content

[80]

White Screen of Death
If you upload a file that is too large based on your server's
configuration, you will be greeted with a White Screen of Death
(WSOD). When PHP runs out of memory, it displays a message about
a fatal error and then quits. Elgg is configured to hide these errors by
default as they can be confusing to users. The size of files that you
want to support will influence how much memory you need to give
PHP. Chapter 10 discusses this in more detail.

If a user wants to update the file later, the user clicks the edit link on the file's page
and selects a new version of the file to upload. Notifications are not sent when a file
is updated.

Is this secure?
Allowing users to upload files to your server can be a dangerous
proposition. If the user can upload a script and execute it, all sorts of
damage can be caused. Fortunately, Elgg does this the correct way by
storing the files in a special data directory. Users cannot remotely run
any file stored there, which prevents a malicious user from uploading
and executing a script. This is a big security advantage that Elgg has
over many other web applications that allow file uploads.

Viewing
The file tool provides the same list pages and a profile widget as the other tools.
The list pages include one for a user's files, one for the user's friends, and one for
all files on the site. In addition, Elgg automatically creates lists categorized by file
type to organize the files. As you would expect, all of the different list pages provide
RSS feeds.

Chapter 4

[81]

When selecting to view just pictures, the file tool presents them in a gallery view.
This is much more visually appealing than a list of file names with small icons.

Sharing Content

[82]

The page for viewing an individual file should look familiar by now. It includes
the title, description, tags, and a comment area. It also contains the Download this
button so that users can access the file.

Just as photos have a special gallery view, there is a special feature for audio files.
When you enable the Zaudio plugin, a Flash-based audio player is inserted on audio
file pages so that people can listen to the files in their web browser.

Chapter 4

[83]

Use cases
•	 Sharing code snippets and scripts: Software developers usually have scripts

and snippets of code lying around that perform common tasks like renaming
every file in a directory. A developer would not package those scripts into
a library to give to others because they seem disposable. What if there was
a simple mechanism to share these bits of code across an organization?
Using the file tool, developers could upload, tag, and comment on scripts
and snippets.

•	 Maps and trail guides for a hiking group: There could be a hiking group
on a general purpose site or an entire site dedicated to hiking with location
specific groups. The users would upload electronic versions of maps and trail
guides for local hikes. A rating tool could be incorporated to make it easy to
find the best hikes.

Customizations
Here are a few sample customizations that can be implemented through plugins.
Chapter 6 describes the process of finding plugins in the Elgg community plugin
repository. Chapter 7 and Chapter 8 provide tutorials on building plugins.

•	 User quotas: The hard drive on your server does not have infinite space.
•	 Folders: If users are uploading many files, being able to organize them into

folders is a great feature.
•	 Video playing: If you can play MP3 files in the browser, why not video too?
•	 Limiting file types: You may want to only allow Word documents and Excel

spreadsheets for your site.

The wire
You may not know what microblogging is, but you have likely heard of the popular
microblogging site, Twitter. Microblogging is simply a very short blog post, usually
limited to 140 characters. People use this format for sharing updates on what they
have been doing, commenting on news events, or posting links to websites. The Elgg
microblogging tool is called The Wire and works much like Twitter.

The features of the wire plugin include:

•	 140 character posts
•	 Hashtags
•	 Replies

Sharing Content

[84]

•	 Conversation threads
•	 RSS feeds

Posting
Selecting The Wire from the site menu takes users to a page where they can read the
latest wire posts or add their own. As a user types a post, a counter underneath the
text box indicates how many characters are left. When a post is saved, notifications
are sent to the poster's friends and the activity stream is updated.

The wire automatically changes web addresses, e-mail addresses, hashtags, and
usernames to links when the wire posts are displayed. A hashtag (like #help in the
preceding screenshot) becomes a link to all the posts with that tag. A username
preceded by the @ sign (such as @cash) links to that user's wire page.

Clicking the reply link on a wire post takes a user to a page that displays the original
post with the poster's username to make it easy to include it in the message. The
original poster is notified of the new post even if they are not friends.

Chapter 4

[85]

Posting a link to an article on the Web along with a personal reaction is very
common in microblogging. It is challenging to say much of anything though with
the link taking up most or all of the 140 characters. To work around this limitation,
many use URL shortening services like TinyURL or bit.ly. These services create a
short URL such as http://tinyurl.com/qdsq92 that redirects people to the original
website when clicked. The wire includes a hook so that a URL shortener can be
added to the wire page through a plugin. Users can then skip the process of going to
a site like TinyURL to get the shortened link.

Viewing
Besides the All, Mine, and Friends pages common to all the tools, the wire provides
a look at a conversation thread. This page displays a post and all the posts that were
made in reply to it and all the replies to those replies and so on. This is done in
chronological order so that users can read through the conversation thread.

Sharing Content

[86]

The wire also has a profile widget that allows a user to select the number of posts
to display.

Twitter integration
Elgg is distributed with a Twitter API plugin. It handles posting users' wire posts
to their Twitter accounts. This requires that an administrator register the Elgg
website with Twitter and the users must authorize the Elgg site to post tweets to
their Twitter account.

To activate the plugin, go to the the Plugin page in the administration area and
activate the OAuth API plugin. (This is an example of one plugin depending on
another and we will cover Elgg's plugin dependency system in Chapter 6.) Next,
activate the Twitter API plugin and then click the plugin's settings link. An Elgg site
needs two keys from Twitter before Twitter will accept data from it. The instructions,
as shown in the following screenshot, include a link to Twitter's app registration page:

Chapter 4

[87]

Twitter's registration page asks for several details about the Elgg website. The
Application Name is displayed to users when they authorize the Elgg site to act on
their behalf. In order to post new tweets, the application must have both read and
write access. Finally, the callback URL must be set. This is where Twitter sends the
user after approving the application's request for access. The instructions on the
Twitter API settings page include this URL. (Twitter requires a valid domain name
in the callback URL so it will not accept http://localhost/ addresses.) After
submitting the data, Twitter provides a consumer key and a consumer secret that
must be entered into the plugin settings page. After completing these steps, Twitter
now trusts the website.

http://localhost/

Sharing Content

[88]

A user still has to tell Twitter the site has access to his account for the posting to
work. This is done on the user's Configure your tools page in the Settings area. It
includes a link to Twitter's authorization page.

Twitter explains what access the Elgg site will have to the user's account on the
authorization page. The user can approve or deny this access.

Chapter 4

[89]

If the user approves access, the next wire post by the user is published on Twitter.

Use cases
•	 Answering questions: On a corporate intranet, people post questions when

looking for help: "How do I reserve the conference room on the third floor?"
They can reach a large number of people through the wire. People get to
control how they are notified (check the site occasionally, e-mail notifications,
RSS feeds) rather than spending time reading a corporate-wide e-mail.
Because the wire posts were published where everyone in the organization
has access, the questions and answers can serve as a resource when people
are looking for the same information in the future. Using the wire in this way
does not replace other methods for seeking expertise in an organization, but
can serve as a great complement.

•	 Live tweeting an event: Your students have been learning different
propaganda techniques. The class is assigned to listen to a political speech
on television and post to the wire as they detect the speaker using one of
the techniques. The students can reply to each other on the wire during the
speech. Later the timestamped wire posts can be compared by the class to a
recording of the speech.

Sharing Content

[90]

Customizations
Integration with Twitter was deemed important enough that Elgg distributes a
plugin for this. This happens with other features that are commonly requested.
They may start out as a community plugin, but later are integrated with the plugins
bundled with Elgg.

•	 Integration with Twitter: Many of your users may want what they post on
the wire to show up on Twitter. The twitter_api plugin distributed with
Elgg does just that. A bonus is that people's tweets will contain a link to your
site giving you some free advertising.

•	 URL shortener: If you expect your users to be posting links often, adding a
URL shortener plugin is recommended.

Summary
Elgg has a powerful set of tools for sharing content. We covered the features provided
by these tools so that can you try them out on your site. Beyond learning about the
capabilities of the tools, we talked about design-related issues. Think like your users
as you design your site. A great way to accomplish this is by developing use cases that
describe how users might accomplish various tasks. From there you can develop lists
of features and customizations needed to implement those use cases.

In the next chapter, we continue our in-depth exploration of the plugins distributed
with Elgg by looking at the collaborative and communication plugins.

Communities, Collaboration,
and Conversation

People naturally tend to form communities. They eat lunch with the same people
again and again, get together with the same friends on the weekends, and talk with
the same co-workers throughout the day. Social interactions on the Web are no
different. Bloggers tend to collect into communities as they link to and comment on
each other's posts. In discussion forums, there are often groups of participants who
form cliques and have very personal interactions that extend beyond the purpose of
the forum.

When running a social website, it is important to encourage and support the
development of communities. Elgg does this through its groups tool, which helps
organize people and content. Elgg also comes with tools for collaboratively editing
content and for communicating with other users. As in the previous chapter, the
discussion of each tool is divided into four sections: creating content, viewing
content, sample use cases, and possible customizations.

The plugins covered in this chapter are as follows:

•	 Groups
•	 Pages
•	 Messages
•	 Message board

Communities, Collaboration, and Conversation

[92]

Groups
Groups are the primary hub of activity on most Elgg sites. The communities that
form around the groups offer a great starting place for new members to find people
with similar interests. The combination of the discussion forum and content-sharing
tools creates a rich environment for community interactions. As you design your site,
consider ways to feature the groups capability to potential and current users.

Features of the groups plugin include:

•	 Group profile
•	 Group activity
•	 Membership invitations and requests
•	 Membership list
•	 Discussion forum
•	 Content sharing
•	 Search for groups

Creating a group
In Elgg, any member of a site can create a group. The button for group creation is
found on the main group page, reached by selecting Groups from the site menu. An
example group creation form is shown in the following screenshot. It includes:

•	 Group name
•	 Group icon
•	 Group profile fields: full description, brief description, and tags
•	 Membership (open or closed group)
•	 Enabling group tools (blog, bookmarks, discussions, files, pages)

The brief description field is used on the group listing page. It is supposed to catch
people's attention as they scan the list of available groups. Search uses the full
description field, so it is important to fill that out too.

Chapter 5

[93]

Closed groups have restricted membership and their content pages are only available
to members. Joining a closed group requires approval of the group owner, either by
invitation or approved membership request.

Upon clicking the Save button, the group is created and the activity stream is
updated to inform people about the new group. To update a group, the user who
created the group (also known as the group owner) can click on the Edit group
button on the group's profile page. The same group creation form is used, except that
there is a Delete button at the bottom.

Communities, Collaboration, and Conversation

[94]

Group profile
The group profile page, as shown in the following screenshot, provides an overview
of a group. The sidebar contains links for navigating through the group pages.
It also includes a set of group member avatars with a link to a list of all the
group's members.

On the left side of the page are the profile fields and a set of widgets that display the
latest group content. Unlike the widgets on a user's profile page, these widgets are
not draggable.

Group RSS feed
The group homepage has its own RSS feed and it is updated
whenever a new discussion topic is created or when one of the
other group tools is used. This provides a great option for those
users who prefer to not receive e-mail notifications.

Chapter 5

[95]

Membership
Only the group owner can invite new members. At the top of the group profile is a
button that leads to the group invitation page. Group owners can select from among
their friends as shown in the following screenshot. They then click on the Invite
button to send out the e-mail invitations.

The e-mail invitation lets the receiver know who is inviting them to join the
group and includes a link to that user's group invitations page. This page lists the
invitations that the user has not responded to yet. The user can accept the invite or
delete it.

Communities, Collaboration, and Conversation

[96]

If a user wants to join a closed group, then there is a Request membership button
where the Join group button is located for open groups. Clicking it sends a notification
e-mail to the group owner. The owner manages pending requests for the group with an
interface similar to the invitations page, as shown in the following screenshot:

Discussion forum
One of the features that make groups so attractive to users is that each group has
its own forum. Group members can use the forum to ask questions, share news,
or discuss whatever they are thinking about. The discussion forum can be reached
through a sidebar menu item on the group profile page or the view all link in the
discussion widget. Each topic summary lists the member who started it, when it was
started, the number of replies, and when the last reply occurred.

Chapter 5

[97]

Each topic has a title, body, tags, access level, and a topic status (open or closed
topic). The WYSIWYG editor (discussed in Chapter 4, Sharing Content) and the image
embedding capability are available when creating a topic. When a user submits
a new topic, the topic is posted and notifications are sent to the members who
registered for them.

Changing the title of a topic or closing an open topic is done by clicking on the edit
link on the topic. Each topic also has a delete link for removing it. The users with the
permissions to use these links are the starter of the topic, the owner of the group, and
any administrator.

Communities, Collaboration, and Conversation

[98]

Members of the group can respond to a posted topic by submitting comments. These
comments are sent as notifications to those who registered for group notifications.
The comments can be edited after they have been created so that those embarrassing
spelling errors can be corrected. As with most pages on Elgg, users can subscribe to
the RSS feed for that page. Each topic has a feed for its comments. There is also a feed
for all new topics.

Group tools
Besides the discussion forum, the group owner can turn on four other tools: blogs,
bookmarks, files, and pages. The only difference between using these tools within a
group is the notifications. When a group member writes a blog post, members who
registered for group notifications are told about it. That person's friends are not
notified. Instead, the notifications are sent to the group members who have enabled
group notifications.

Chapter 5

[99]

A question that comes up frequently regarding the group tools is when to use the
discussion forum, blog, and pages within a group. They overlap in functionality and
this can be confusing – especially for new users. A good metaphor to distinguish
these tools is the following:

•	 The group blog is a lot like a conference where a single speaker is presenting
at a time. When the speaker is done, people can interact through questions.

•	 A discussion forum topic is like a conference call or meeting where
individual people take turns leading the conversation.

•	 The group pages are like people standing around a whiteboard working on
a design or a plan. As different people draw on the board, they can add to,
change, or erase what the others put up before them.

Elgg-based sites are not limited to the content tools that are distributed with
Elgg. Additional tools can be added to groups through plugins. We cover a few
possibilities in Chapter 6, Finding and Using Plugins.

Finding groups
As more and more groups are created on your site, users have more difficulty
scanning all of them to find the ones that interest them. There are three tools for
this on the main group page. First, the newest and most popular groups are listed
on separate tabs as shown in the following screenshot. The other tab lists the latest
discussion across all groups. Using these tabs enables users to quickly look for
interesting discussions and groups.

Communities, Collaboration, and Conversation

[100]

Second, there is a search box in the sidebar. This searches over the tags that the
group owners have added to the group profiles. Third, the site administrator can
select particular groups to be featured using the Make featured link that is available
in the newest and popular tabs. The featured groups appear in the sidebar. This is a
good way to advertise the more interesting groups to your users.

Use cases
•	 Community of practice - There are employees spread throughout the

organization with a similar skill. They need a place to ask questions and
share best practices. This encourages the flow of information across the
organization. A group provides the tools needed for this.

•	 Group project - Your students have been divided into teams for a research
project. Each team has a group so that they can discuss the assignment, share
information, and collaborate on writing the report. At the end of the project,
the group is an artifact that can be used to evaluate the teams' work.

•	 Premium content - Your site offers free membership, but you derive income
by offering premium content for a fee. Access to this content is controlled
through closed groups. Joining a closed group requires payment of the fee.

Customizations
The following are some possible customizations for the groups tool that can be
implemented through plugins. Many of them are available in the Elgg community
plugin repository, which we cover in the next chapter.

•	 Group categories - As the number of groups grows, it can become difficult
for new members to find the groups that they want to join. Organizing the
groups into categories is very helpful.

•	 Group widgets - The group profile page has widget-like areas to display the
latest blogs or files, but group owners have no control over the layout or how
many items are displayed. A user profile-like widget system gives the group
owner more control.

Chapter 5

[101]

•	 Group administrators - As groups grow in size, more than just the group
owner may be required to administer the group.

•	 Group moderation - You may want to limit the creation of groups to prevent
the formation of unofficial groups or duplicate groups.

•	 Rename to communities - If you think the name 'communities' better
captures what is happening with the groups tool, then you can rename it
through a simple plugin.

Pages
The pages tool enables users to put together text and images to create simple web
pages. It works like a wiki in that multiple people can edit the pages, but it does not
require that users learn wiki syntax. It provides capabilities similar to a collaborative
word processor.

The features provided by the pages plugin and the other plugins distributed with
Elgg include the following:

•	 WYSIWYG Editor
•	 Embedding photos
•	 Collaborative editing
•	 Tags
•	 Read and write access control
•	 Nested pages
•	 Commenting
•	 Liking

Communities, Collaboration, and Conversation

[102]

Creating pages
When users create a new page, they are presented with a familiar editing interface. In
fact, there is only one difference between the interfaces for writing a blog and writing
a page: pages include both a read and a write access level control. The write access
can be set to only group members if the page belongs to a group or a user could set
the write access so that only friends can edit it. An example of creating a page is
shown in the following screenshot:

When a user saves a new page, the activity stream is updated and e-mails are sent to
those who registered for notifications. When a page is updated, the activity stream
gets a new entry, but no notifications are sent.

Pages can be organized in a hierarchical fashion by creating sub-pages. A sub-page
is created when viewing a page by clicking on the Create a sub-page button at the
top of the content area. There is no limit to the number of levels in the page hierarchy
that can be created.

Chapter 5

[103]

Viewing
Clicking on Pages in the site menu takes users to a list of the latest pages. There are
separate tabs for the user's and friends' pages. Only top-level pages are displayed in
these lists. Clicking on a page's title leads to a web page that displays the content and
provides a navigation box in the sidebar for any sub-pages.

Each page has an RSS feed that includes the latest version of the page. To see the
previous versions of a page, users can click on the History link that is next to the
edit link. The history page lists the revisions ordered by date and each revision can
be viewed.

Communities, Collaboration, and Conversation

[104]

Use cases
•	 Help documentation - You want to add some documentation to your

site. The pages tool provides a convenient way to write and organize this
documentation.

•	 Group-based FAQ - A popular use for the pages tool is collecting frequently
asked questions within a group. It saves everyone time if this resource is
available to both long time and recent members.

Customizations
•	 Restore a revision - With collaborative editing, there will come a time when

the users want to roll back to a previous revision. This is done by copying the
content from that revision and saving it over the current version. A built-in
capability to do that with a single click of a button would be useful.

Messages
There are times when users want to communicate privately. The messages tool
provides an e-mail-like interface for exchanging messages without revealing
e-mail addresses.

Inbox
Next to the friends icon in the top bar is a white envelope icon. When a user has new
private messages, a red circle appears with the number of unread messages. Clicking
the envelope icon takes a user to the user's inbox.

Chapter 5

[105]

In the inbox, unread messages are highlighted in red. Each message has a Delete
button and there are controls below the message list for deleting multiple messages
or marking all the displayed messages as read.

Composing
To write a private message, a user clicks on the Compose a message button. The
drop-down menu for selecting the recipient is populated with that user's friends.
After selecting the recipient, the user fills out the subject and body and clicks on
Send. The message is stored in the user's sent messages folder and a notification is
sent to the recipient.

Communities, Collaboration, and Conversation

[106]

To send a message to someone who is not a friend, a user can select the Send a
message option in the hover menu on the other person's avatar. To reply to a
message, a user clicks on the Reply button above the received message. A textbox
appears with the subject already filled in as shown in the following screenshot:

Customizations
•	 Limit to friends - By default, Elgg allows anyone to send a message to

anyone else. Users may not like this and spammers can take advantage of
this. By limiting messaging to friends-only, you can handle both concerns.

•	 Send email to groups - The messages tool only supports sending a message
to a single recipient. Being able to send to a list of users provides a more
email-like functionality.

Message board
The message board adds a public conversation capability to Elgg similar to Facebook's
Wall. The primary interface to the message board is a widget that users can put on
their profile page. The following screenshot shows what this widget looks like:

Chapter 5

[107]

There are three links of interest on the message board widget:

1.	 The View all link leads to the message board of the widget's owner.
2.	 The reply link takes a user to the message board of the poster.
3.	 The history link is used to view posts between the poster and the user who is

viewing the widget.

The distinction between these links can be confusing to first-time users, and it
usually requires some experience to understand them.

When someone posts on a message board, a notification is sent to the message
board's owner. The notification includes a link to the poster's message board page.
It is usually best to post a reply on the other person's message board so that they
get a notification.

The full message board page is shown in the following screenshot. It is reached by
clicking on the widget's view all link or by following the link in a notification.

Communities, Collaboration, and Conversation

[108]

Customizations
•	 Wall-to-wall - The history page can be confusing because it does not show

the conversation between the poster and widget owner, but the viewer and
the poster. There is a plugin on the Elgg community site called wall-to-wall
that makes the history link display the conversation between the poster and
the person whose profile page you are on.

•	 Guest book - The message board could be renamed as a guest book. A guest
book does not need to support conversations; the confusing reply and history
links could be removed.

Summary
Community, collaboration, and conversation – three important aspects needed
to make your social site…well, social. The groups tool is critical for encouraging
collaboration and community development. The other tools covered provide
complementary social capabilities. This finishes our exploration of Elgg and the
plugins bundled with it.

In the next chapter, we cover how to find, install, and evaluate plugins in the Elgg
community plugin repository.

Finding and Using Plugins
Elgg is distributed with over 30 plugins. The previous three chapters gave an
overview of the features that they provide. It is possible to build a social networking
site using only those plugins, but it is likely that you will want to customize your site
with additional plugins. This chapter covers all you need to know to find, evaluate,
install, and configure plugins. The topics will include the following:

•	 Administering plugins on your site
•	 Finding plugins on the Elgg community site
•	 Installing plugins
•	 Finding and installing themes
•	 Previewing three popular plugins available from the Elgg plugin repository

Plugin administration
In Chapter 3, A Tour of Your First Elgg Site, we gave a quick introduction to the
plugin administration page by describing how to activate a plugin. Because Elgg
is so plugin-focused, it needs a good tool for managing these plugins. This section
provides detailed information on how to use the plugin administration page.

Filtering and sorting
One of the first things you may have noticed about the plugin page is that there
are a lot of plugins bundled with Elgg, which results in a lot of scrolling to find
any individual plugin. To simplify this, Elgg allows an administrator to filter the
plugins. The filter has options for viewing only the plugins that are inactive. This
makes it easy to locate a plugin that was recently uploaded to a server but not
yet enabled. Plugins can be filtered by whether they were bundled with Elgg or
were downloaded separately. Finally, plugins also have categories such as Admin,
Multimedia, or Communication that can be used for filtering.

Finding and Using Plugins

[110]

Besides filtering, Elgg also supports sorting plugins as demonstrated in the following
screenshot. The list of plugins can be sorted by three criteria: priority, alphabetical,
and newest. As we discuss next in this section, the order in which Elgg loads plugins
matters. Priority sorting displays this order so that it can be adjusted. The newest
option sorts plugins by the date they were first uploaded to the server. If you think a
recent plugin addition has been causing problems on your site, then you can use this
sort choice to find the possible culprit.

Plugin dependencies
Plugins not only add new capabilities, but also modify existing functionality.
Consider a theme plugin as an example of modifying Elgg. It might modify Elgg's
built-in theme by changing the color scheme, but leave the fonts the same. A plugin
can also modify another plugin works. An example of this is a plugin that changes
the titles and wording of the blog plugin to use poetry instead of the word blog. For
this override to work, the plugin must be loaded after the blog plugin.

By default, newer plugins are loaded last. If the loading order must be changed,
then there are Up and Down links on each plugin for moving a plugin a single spot
at a time. Plugins can also be dragged when you move the mouse over the top of a
plugin box as shown in the following screenshot. This makes it easy to move a plugin
several slots in the priority order. As a precaution, reordering is only allowed when
the plugins have been sorted by priority.

Chapter 6

[111]

For most plugins, order does not matter. All of the plugins bundled with Elgg can
be loaded in any order. If a plugin modifies how another plugin works, then it
needs to be loaded after that plugin. Fortunately, the plugin system tells you when
order matters as long as the plugin author included this information in the plugin
description. The more info link toggles the display of all the dependencies and other
information about the plugin. As shown in the following screenshot, the poetry
plugin says that it must be loaded after the blog plugin:

Finding and Using Plugins

[112]

Plugins can depend on more than the order in which they are loaded. Some plugins
only work with certain versions of Elgg. For example, Elgg 1.8 added a new menu
system. A plugin that uses this menu system will not work with Elgg 1.7. A plugin
can also require that another plugin is enabled before it can be activated. In Chapter 4,
Sharing Content, we described how the Twitter API plugin requires the OAuth plugin.
When the OAuth plugin is not enabled, the plugin system highlights the failed
dependency as shown in the following screenshot and does not allow the Twitter
API plugin to be enabled:

Chapter 6

[113]

Plugin settings
The plugins that have administrative settings also have links next to their names that
lead to their respective settings pages.

An alternate way to reach a plugin's settings page is through the sidebar menu.
Under Configure | Settings are pages for configuring the site (basic and
advanced settings) and for plugins. A plugin settings page ranges from a single
drop-down option as shown in the following screenshot to extensive options offered
on multiple tabs:

Finding plugins
After experimenting with Elgg for the last three chapters, you probably have a list
of what you would like to add to or change about the site. The next step is to find
plugins that do what you want. The first place to look is the Elgg community plugin
repository (http://community.elgg.org/pg/plugins/all/), as shown in the
following screenshot. Hundreds of people have uploaded over a thousand plugins to
the repository. The quality of the plugins in the repository varies greatly. Many were
written by professional developers who work with Elgg as a full-time job. Others
were coded by software developers who like to dabble in plugin development
in their free time. Still others were created by people with no prior development
experience, but who have figured out how to customize some aspect of Elgg and
want to share it with others.

http://community.elgg.org/pg/plugins/all/
http://community.elgg.org/pg/plugins/all/

Finding and Using Plugins

[114]

In this section, we cover how to find plugins in the community plugin repository and
how to evaluate their quality before downloading them. We conclude the section by
discussing your options if you do not find plugins that satisfy all of your requirements.

Chapter 6

[115]

Browsing the repository
Looking through what is available in the repository will likely give you new ideas
for your site. There are plugins that add significant capabilities to your site, such as
a photo gallery or a chat client. There are also many that tweak the way that Elgg
works or add a simple feature.

The front page of the plugin repository lists the newest, most downloaded, and
most recommended plugins. The last two are a great place to start because the Elgg
community has already indicated that those are great plugins. The plugins are also
organized by categories. If you are looking for a certain type of plugin that fits one of
the categories, then you can scan through the category listing looking for a match.

While not required to download plugins, it is a good idea to register for an account
on the Elgg community site. Having an account enables you to ask questions of the
plugin developers or interact with other Elgg users in the forums.

Searching
The repository supports searching over the title and descriptions of plugins. Searches
can be limited to a particular category (show me all plugins in the category widgets
that include the word video). The search engine used by the repository is very
rudimentary and you may have more success using Google.

Evaluating before downloading
It is a great feeling when you try out a plugin that adds terrific features to your Elgg
site. All it takes is a few minutes of your time and the generosity of the developer
that shared the plugin. The opposite is also possible: you are in a panic when a newly
installed plugin crashes your site. Here are some tips to give you more of the first
feeling and hopefully, none of the second.

Look at the plugin overview
Is the plugin description well-written? Does it adequately explain the purpose
of the plugin? How many times has the plugin been downloaded? Does it have
many recommendations?

Read the comments
Are people complaining about the plugin or praising the plugin author? Does the
author answer people's questions? Are there bugs that have not been fixed?

Finding and Using Plugins

[116]

Check the history
Has the plugin been updated often? While it is possible that the first release did
not have any bugs, more often plugin authors need to make a few releases to work
out some of the problems. Has the plugin been updated recently? Recent activity
indicates the author is maintaining the plugin and possibly adding new features.

Find developers that you trust
The best way to avoid poorly written plugins is to find the best
developers and use their plugins. Many of them upload plugins that
they build for clients. You can list all of a developer's plugins by using
the hover menu on a user's profile avatar on the community site.

Custom plugins
If you did not find what you were looking for by browsing and searching, then the
remaining option is to create a custom plugin. If you have development skills or a
strong interest in learning, then you can build it yourself. Chapters 7 and 8 provide a
tutorial-based introduction to plugin development. If you are not inclined to create
your own, then you can contract with a developer to write plugins for you. To
find a developer, you can start by checking the list of development companies that
advertise on the Elgg site (http://elgg.org/services.php) or by contacting the
developers of plugins that you like. Be aware that not all of them do custom plugin
development, but instead focus on creating entire websites based on Elgg.

Installing plugins
It is very tempting to download every interesting plugin and try them all at once.
Don't. If something does go wrong, then it is very difficult to figure out which plugin
is causing the problem. The best way to try out new plugins is to methodically add
one at a time, exploring the functionality of the plugin before moving on to the next
one. As you do this, you may want to take notes about user interface details that you
would like to change or features that you would like to add or modify. These notes
will help you later to prioritize and estimate the amount of effort involved in getting
your site up and running.

http://elgg.org/services.php

Chapter 6

[117]

Test server
Testing new plugins is not conducive to running a stable site. It is always best to
test plugins on a test server. You should never try new plugins on a production site.
Make a mistake with your production site and your visitors could be greeted by an
empty white screen. Always test any changes on a test site before deploying them to
a production site. A test site could be a laptop with a few fake test users or another
server with a clone of the production database.

Production site
A production site is one with real users who expect the site to
be stable and functional.

Copying the code
After you have found and downloaded a plugin that you want to try, the next step
is to put the plugin code into the mod directory of Elgg. When you downloaded the
plugin, it was likely archived as a ZIP file. Extract the files and check that the plugin's
base directory has files and directories that look something like the following
screenshot:

Then copy that plugin directory into the mod directory of Elgg. In the mod directory,
you should have directories such as blog, bookmarks, and groups and they should
all have this same structure.

Activating and configuring
After copying the code, navigate to the plugin page on your Elgg site. Check that
there are not any errors due to unmet dependencies and then activate the plugin. The
plugin should change color from inactive grey to active white.

Finding and Using Plugins

[118]

Invalid plugin?
If Elgg says the plugin is invalid, then there are three possible causes, as follows:

1.	 The web server may not be able to read the files so the permissions need to
be changed.

2.	 Sometimes when the plugin is extracted from the zip archive, there are two
levels of directories before you get the files shown on the preceding page. If
that is the case, then copy the second directory in Elgg's mod directory.

3.	 The last possibility is that it really isn't a plugin. If you do not see a file
named start.php, then you can be sure that it is not a plugin.

After the plugin is enabled, configure any settings that it has and then start testing.

Troubleshooting
If a new plugin causes a significant problem with your site, then disable it. If you
cannot reach the plugin administration page, then create a file in the mod directory
called disabled. It does not need to have any content. Elgg checks if that file exists
and if it does, it does not load any of the plugins. You can then disable the offending
plugin and delete the disabled file.

If you experience problems with a plugin, then you have a variety of resources
available to you. Each plugin's page in the community plugin repository has an
area for comments so that you can communicate with the author and other users
of the plugin. There are also group forums on the community site that can be
used for getting help or advice. Furthermore, do not forget to check the Elgg wiki
(http://docs.elgg.org) that has plenty of great troubleshooting information.
There are links to these resources at the bottom of every Elgg administration page.

Themes
If you have scanned the Elgg directory structure, then you have not found a
directory labeled themes. This is because in Elgg, a theme is a plugin. Themes live in
the same directory as plugins. They have the structure of plugins. They are activated
like plugins. This is unlike many of the web applications that you may have used in
the past.

http://docs.elgg.org/

Chapter 6

[119]

Since a theme is a plugin, you may be wondering where the theme plugin distributed
with Elgg is. There isn't one. The default theme is built into Elgg. You do not turn off
the default theme and replace it with another theme. Instead, a theme plugin modifies
the default theme. To use an analogy, theming with Elgg is like remodeling a house
rather than building a new one. Painting the rooms of the house can create a very
different look. You can also rip out some walls if the floor plan does not match what
you want. The amount of work depends on how different the current house is from
your dream home. The same is true for theming. You can achieve a wide variety of
looks by replacing the default CSS of Elgg. If the default HTML does not support your
site design, then you can also selectively replace it through a theme plugin.

All themes override the default CSS, which determines visual aspects such as the color
scheme and fonts. The CSS also combines with the HTML to determine the layout.
Most themes include graphics that match the color scheme determined by the CSS.
Many also change a small amount of HTML and include additional JavaScript libraries
to add user interface elements such as slideshows, animations, or fancy forms.

Finding and installing themes
You have four options when looking for a theme: free themes, commercial themes,
custom themes, or building your own. This section provides an overview of the first
three options. Chapter 9, Theming Elgg, discusses creating your own theme.

Free themes
The Elgg community site is the first place to look for themes. In the plugin area of the
site, you can select the theme category to see a listing of what is available.

Finding and Using Plugins

[120]

The themes are uploaded primarily by theme designers who are showcasing their
work or by people sharing a theme they created for their site. Most themes' pages
include screenshots so that you can preview the theme before downloading it. As
with any of the plugins on the site, the quality varies from theme to theme. Read
through the comments on a theme to evaluate other users' experiences with it. The
number of times a theme has been downloaded also lets you know which ones are
the better themes.

Commercial themes
A commercial theme is one that is available for purchase by the public. It is offered at
a price that is a small percentage of the cost to produce it. The designer is depending
on selling the theme to many users in order to make a profit. The commercial
theming community for Elgg is still small as compared to the WordPress community
or other popular web applications like Drupal or Magento. Googling Elgg themes will
turn up a handful of sites that specialize in selling Elgg themes. When evaluating a
commercial theme designer, consider the following:

•	 Try a free theme by the same theme designer. Does it work well or does
it break your site? Are there useful comments in the code to help with
customizing it?

•	 Ask about support. Some designers will sell you the theme as-is while others
will provide limited support as you work with the theme.

•	 Ask about the designer's policies. Can you get your money back if the theme
does not work well for you? Are there any restrictions on how you can
modify it, such as having to leave a link to their site in the footer? Do you get
free upgrades?

Custom themes
While free and commercial themes cost little to nothing, you know that there will
be other Elgg-based sites using the same theme. You may also need to spend some
time tweaking the theme to fit your needs. Contracting with a designer/developer to
create a custom theme guarantees a unique look for your site, but at a significantly
higher cost than a commercial theme.

Chapter 6

[121]

When looking for a front-end developer or web designer to build a theme, you
are not limited to those who advertise experience with Elgg. You are looking
for a developer with strong visual design skills and some basic knowledge of
PHP. Ideally, the developer has had experience creating themes for similar web
applications. A developer who has not worked with Elgg before would need to learn
how to override and extend views. For a theme that deviates significantly from the
standard HTML markup of Elgg, the developer would also need to learn the basics
of writing Elgg plugins. The time spent learning Elgg will generally factor into the
cost of theme.

Installing themes
Themes install just like plugins, as follows:

1.	 Copy the theme directory into /mod.
2.	 Activate the plugin (and disable your previous theme if you were not using

Elgg's default theme).
3.	 Optionally set any theme options.

Themes are typically placed last in the plugin list so that they can override the CSS of
other plugins.

After the theme has been installed, look around your site to check for problems.

If there are sections of your site that are not modified by the theme (that
is, the colors are wrong), then it is likely that you have a plugin that
includes its own CSS that the theme does not override. You may be able
to get assistance from the developer of the theme to fix this. Otherwise,
you must make the necessary modifications to the theme. This will not
happen with a custom theme as you already provided the developer
with a list of plugins to support.

When testing, be sure to use multiple browsers. It is especially important to test with
Internet Explorer (IE), the bane of web designers everywhere. It is not uncommon
for a theme to work perfectly in Firefox, Safari, and Chrome, but fall apart in IE.

As you try out different browsers and different pages with your new theme, keep a
list of what is not working or what you would like to change. You may decide the
list is too long and look for a different theme or the list may become your to-do list in
your first foray into theme customization.

Finding and Using Plugins

[122]

Did the theme break all the JavaScript on your site?
If the drop-down menus stop working and the status messages stop
fading away, then this means that there is an error in the theme's
JavaScript code or the theme included a version of jQuery that is
incompatible with your version of Elgg. Check with the theme
developer to determine what versions of Elgg the theme has been
tested on. The technical support group forum on the Elgg community
site is also a good resource for getting troubleshooting advice.

Major community plugins
There are hundreds of plugins available in the community plugin repository
(http://community.elgg.org/). There is no way to review them all in this book,
so we will highlight three of them. Each of these plugins is very popular within the
Elgg community and is maintained by skilled developer(s). They are among the best
demonstrations of what can be created with a plugin in Elgg.

Tidypics
Tidypics is a full-featured photo sharing tool that is actively developed.

Plugin profile
Author: Cash Costello with contributions by several other developers.

Link: http://community.elgg.org/pg/plugins/tidypics/read/385077

Features include:

•	 Photo albums
•	 Photo tagging
•	 Slideshow
•	 Watermarking
•	 Album sorting
•	 Bulk image uploading
•	 User quotas
•	 Commenting
•	 Groups integration

http://community.elgg.org/
http://community.elgg.org/

Chapter 6

[123]

Administration
Many of the major plugins available in the community repository have a large number
of configuration options. This enables customization of the plugin without writing
any code. Tidypics is no exception to this. About half of its settings are shown in
the following screenshot. Many of these settings have been requested by people just
like you over the last three years. There are settings for the thumbnail sizes to better
match your theme and a per-user disk quota so that your hard drive is not filled up
with photos. A view counter for each image can be enabled and a watermark can be
configured. Glance at the settings to see the full range of what is offered.

In addition to the Settings tab, Tidypics has four other tabs with administrative
information. Because Tidypics needs to resize images for thumbnails or add
watermarks, it needs access to an image processing library. There are instructions on
the Image Library tab for determining what image library is best for a site. There is
also a Help tab with troubleshooting instructions for common issues.

Finding and Using Plugins

[124]

Uploading photos
Tidypics organizes photos into albums. Each album has its own page with description,
comments, tags, and categories. An album can belong to an individual user or to a
group. Photos are uploaded and added to the albums. There are two methods for
uploading photos: a basic upload form with slots for up to 10 images and a Flash-
based uploader that can handle up to 30 images at a time. The Flash uploader displays
the progress of each image transfer, as shown in the following screenshot:

Viewing photos
The owner of an album selects a photo to serve as its cover photo. This cover photo
is used in the activity stream update, the album widgets, and any page that lists
albums. Besides showing up in albums, photos also appear on collation pages. There
are pages that display the most viewed photos, most commented, and most recently
uploaded. These are all good browsing pages to facilitate discovery of new content
by users.

Chapter 6

[125]

The following screenshot shows an album's web page. The most recently added
photos are displayed as a gallery. Clicking on an image leads to a larger view of the
image. Comments can be left on individual images or on the album as a whole.

In addition to viewing the photos on their web pages, each album has a slideshow
link in its menu. The slideshow, shown in the following screenshot, provides a more
dynamic way to view large numbers of images:

Finding and Using Plugins

[126]

Tagging photos
A capability familiar to users of Facebook and Flickr is photo-tagging. With Tidypics,
users can select portions of an image to identify a friend in the image. The people
being tagged are notified of this. There is also a web page for displaying all the
photos that a user has been tagged in.

Event calendar
This plugin extends Elgg to provide an event calendar. It offers a wide range of
configuration options so that administrators can customize it for their sites.

Chapter 6

[127]

Plugin profile
Author: Kevin Jardine of Radagast Solutions

Link: http://community.elgg.org/pg/plugins/project/384926

Features include:

•	 Site-wide and group calendars
•	 Track who is interested in an event
•	 Profile widget for upcoming events
•	 Extensive configuration options

Administration
The event calendar provides an impressive number of administrative options for
tailoring it to a site. The administrator controls who can create events, whether
groups get their own calendars, what fields are required, and how events should be
displayed. There are over 30 different configuration parameters.

Site calendar
When creating an event, a user can set the title, description, location, date, time, cost,
and several other fields. Every event is added to a site-wide calendar. This calendar
can be viewed by month, week, or day.

Finding and Using Plugins

[128]

Users can add events to their personal calendar. They have a web page for tracking
what events are on their calendar, or they can add a personal calendar widget to
their profile pages. There is also a web page available to everyone to see who has
added an event to a personal calendar.

Group calendar
If this feature is enabled, then each group has its own calendar. It works exactly like
the site calendar and also includes an upcoming events widget for the group profile
page as shown in the following screenshot. Group events can be automatically added
to group members' personal calendars if the site administrator enables that option.

Profile Manager
The Profile Manager plugin provides an impressive amount of control over a user's
profile while also integrating with user registration.

Plugin profile
Author: Jeroen Dalsem of ColdTrick IT Solutions

Link: http://community.elgg.org/pg/plugins/project/385114

Chapter 6

[129]

Features include:

•	 Additional profile field type (dates, files, and more)
•	 Profile field categories
•	 Mandatory fields
•	 Read-only fields
•	 Collect profile information during registration
•	 Custom search based on profile information
•	 Ajax administrative interface

Adding profile fields
The Profile Manager has a simple interface for adding new profile fields. The
administrator enters the label and selects one of 11 different profile field types. If the
field has a limited set of values, then they are entered as a comma-separated list.

Another feature of the Profile Manager is the ability to add a hint for each profile
field. It shows up as a tooltip when a user is filling in the profile fields, as shown in
the following screenshot:

Finding and Using Plugins

[130]

Configuring the profile fields
Beyond creating new fields, this plugin also offers several configuration options
per profile field. The red and green lights for each profile field indicate whether or
not the options are enabled. The options include whether the field is shown on the
registration field, whether it is mandatory, and whether the profile field is editable
by the user. This last option is very useful if you are automatically populating some
of the fields from a database.

Plugin settings
As with the other plugins described in this chapter, the Profile Manager supports
customization through plugin settings. The Administrator can require that an avatar
be uploaded during registration, add a special member's search page, or include a
link to the site's terms on the registration page.

Chapter 6

[131]

Summary
You should now feel comfortable installing and configuring plugins. We covered
how to find, evaluate, and install plugins. We also discussed how themes are plugins
and where to find them. The plugins reviewed in this chapter are three of the top
plugins available in the community repository. Not only are they popular, but they
offer more capabilities and more configuration options than almost all of the other
available plugins. Now is a great time to try out some more plugins before you begin
writing your own plugins in the next chapter.

Creating Your First Plugin
The next three chapters are a beginner's guide to customizing Elgg. This chapter
leads you through the process of creating your first plugin. It introduces you
to several components of Elgg's plugin API and provides advice on debugging
plugins. Chapter 8, Customization through Plugins, completes the introduction of
plugin development through a series of examples that teach different facets of Elgg
development. An overview of theming is presented in Chapter 9, Theming Elgg, to
wrap up this section of the book.

These chapters are tutorial in nature and slowly build up your knowledge of
plugin development. They do not cover everything there is to know about Elgg.
Appendix A, Developer's Quick Start Guide, provides a systematic look at the Elgg
framework. It complements the learning-by-example approach of these chapters.
Your starting point depends on your skill level and your preference for tutorials
versus high-level overviews.

The plugin code is available for download at http://www.packtpub.com/elgg-18-
social-networking/book. The combination of the explanations in this chapter and
the comments in the code will provide you with the information needed to modify
the plugins for your own use. The plugins are examples of common customizations.

The topics covered in this chapter are as follows:

•	 Setting up your development environment
•	 Creating a plugin skeleton
•	 Using the Elgg event system
•	 Adding new web pages
•	 Creating views to render content into HTML
•	 Using the menu system
•	 Supporting multiple languages
•	 Debugging a plugin

Creating Your First Plugin

[134]

What you need to know
This chapter assumes that you have at least basic software development skills and
experience with PHP and HTML. You do not need to be an expert in those languages.
You should be able to read and understand their basic syntax and feel comfortable
looking up PHP functions and HTML markup that are unfamiliar to you. To be an
expert in creating Elgg plugins, a developer needs to know PHP, HTML, CSS, and
JavaScript (especially the jQuery library). Most web developers are good in two or
maybe three of those languages and know enough in the others to get by.

If you have never created a web page before or do not know what a for loop is, then
this chapter will be be difficult for you. You will need to learn the basics first. A good
starting place is introductory books on HTML and PHP or working through tutorials
on the Web.

The last thing that you need to know is how PHP works with the web server to
create web pages. This is a common point of confusion with developers who are new
to web development. Let's walk through the process of creating a web page in PHP:
A web browser requests a page from the web server.

1.	 The PHP code is loaded and compiled.
2.	 The PHP interpreter runs the compiled code.
3.	 The code produces a web page as a long string. This string is sent by the web

server back to the web browser.

The web browser renders that string into a web page, including requesting resources
such as images and style sheets. When another request is received, the same process
happens again. This is very different from a desktop application like a word processor
that continues to run as a user interacts with it. The PHP application shuts down
between requests from a user. To maintain state, the application uses session cookies
or stores information in a database. This has implications for building and debugging
Elgg plugins (for example, you cannot set a variable when creating one web page and
expect to access it on another web page without saving it to the database).

Chapter 7

[135]

Elgg developer resources
Several resources for developers were briefly mentioned in the first chapter. Here
they are with more detail:

•	 Wiki documentation (http://docs.elgg.org/). The Elgg wiki has an
overview of the framework, tutorials, frequently asked questions, and
information on contributing to the Elgg project. It also has a list of commonly
used functions in plugin development. This list is also available as a PDF
from the Keetup development team at http://www.keetup.com/download/
elgg-cheatsheet.pdf.

•	 API Reference (http://reference.elgg.org). All the documentation in
the code is extracted and made available in this web resource. Its best use is
searching for functions.

•	 Coding standards and best practices. Elgg has its own coding standard and a
tool for validating code against that standard (https://github.com/cash/
elgg-coding-standards). The coding standards and best practices are
included with the source code in the documentation directory.

•	 Google Group for developers (http://groups.google.com/group/elgg-
development). There are between 50-100 messages a month in this group.
Topics range from introductory (how do I...) to involved discussions about the
future features of the Elgg engine.

•	 Community forums (http://community.elgg.org). The forums have
a mix of experience and skill levels. If you are new to PHP and software
development, then this is probably a better place to ask beginner questions.
There is also significantly more activity in the forums than the developer
group.

•	 IRC channel (#elgg on Freenode). The core developers hold status meetings
in the #elgg channel. Activity varies greatly.

•	 Elgg blog (http://blog.elgg.org). A great resource for keeping up with
new releases and development work on the Elgg engine.

•	 Elgg Github account (https://github.com/Elgg). Elgg core development
team uses Github as a repository for the Elgg engine and many additional
plugins. The easiest way to contribute a bugfix or patch is through Github's
pull request feature.

•	 Bug tracker (http://trac.elgg.org). If you think you found a bug or have
an idea to improve Elgg, then this is the place to report it.

http://docs.elgg.org/
http://reference.elgg.org/
https://github.com/cash/elgg-coding-standards
https://github.com/cash/elgg-coding-standards
http://groups.google.com/group/elgg-development
http://community.elgg.org/
http://community.elgg.org/
http://blog.elgg.org/
http://blog.elgg.org/
https://github.com/Elgg
https://github.com/Elgg
http://trac.elgg.org/
http://trac.elgg.org/

Creating Your First Plugin

[136]

Setting up your development
environment
To write plugins, you need an editor to work with the code, and you need to
configure your site to support plugin development.

Editing code
At a minimum, you will want an editor that is built for working with the
programming languages that Elgg uses. This could be a text editor such as
Textpad++ on Windows or TextWrangler on Macs. (No, Microsoft Word and
Notepad are not options.) The text editor should have features such as syntax
highlighting and searching through files for a particular pattern.

A better option, especially for those new to PHP or Elgg, is an Integrated
Development Environment (IDE). An IDE is a collection of tools for working with
code. With an IDE, you can edit, run, debug, and test code. Important features of
most IDEs are as follows:

•	 Syntax checking: Why wait to test your code on the server to find out that
you forgot to add a semi-colon to a line? IDEs can check your code as you
type it and tell you when it is invalid.

•	 Code navigation: IDEs enable you to jump from where a function is called to
where it is defined and vice-versa.

•	 Code completion: Start typing a function or variable name and the IDE
will provide the possible matches. It saves time and helps those new to a
framework to learn its functions and methods.

•	 Documentation hints: An IDE can show you the documentation for a
function or class anywhere it is used.

•	 Auto formatting: Elgg has a coding standard to help keep code clean and
readable. You can configure an IDE to automatically format code according
to the standard.

•	 Debugging: IDEs have a debugger for interactively hunting for bugs.

Two popular open source IDEs are NetBeans (http://netbeans.org/features/
php/) and Eclipse (http://www.eclipse.org/pdt/). All the IDE screenshots in this
book are of NetBeans with the PHP extension.

http://netbeans.org/features/php/
http://netbeans.org/features/php/
http://www.eclipse.org/pdt/

Chapter 7

[137]

Configuring your site
There are a few modifications that we need to make to your test site before we start
working with code. First, activate the Developers plugin if you have not already. It
adds a Develop section to the administration sidebar menu with some very useful
tools. Select the Developer Settings page from the menu.

We need to make three changes:

1.	 Turn caching off. To speed up the creation of your web pages, Elgg stores
generated content rather than recreating it each time. If caching is turned on,
then Elgg may ignore changes to a plugin. Turn off both simple cache and the
view path cache.

2.	 Turn display of fatal errors on. This may be stating the obvious, but PHP
dies when it experiences a fatal error. In Elgg's .htaccess file, the display of
these error messages is suppressed. This prevents users from seeing overly
technical error messages if something goes wrong. We want to see those
errors in our browser while we write and test code, so check this option.

3.	 Set the trace level to Warning. We want Elgg to write any error or warning
to the server's log while we are working with code. We will discuss this
logging in the section on debugging. Furthermore, we do not set it to
Notice as that writes all the database queries to the log, making it difficult
to find information.

When you are done setting those options, save the settings. Now we are ready to
start coding.

Creating Your First Plugin

[138]

Hello, World!
A Hello, World program is the classic beginner's program in any language. In it,
a developer writes code to print out the words Hello, World. It is often the simplest
program that can be written in a language and provides a sanity check by proving
that a program can be compiled and executed. We are borrowing this concept to
create a Hello, World plugin for Elgg. The plugin creates a web page that displays a
greeting. We then add more functionality to it as we explore different parts of Elgg's
plugin API. This tutorial introduces you to the following:

•	 Setting up a basic plugin skeleton
•	 Using Elgg's event system
•	 Routing requests for a web page
•	 Creating a new web page
•	 Supporting multiple languages (in developer's slang, I18n or

internationalization)
•	 Registering menu items
•	 Creating views that render data into HTML

All the tutorials in this book are written for Elgg 1.8. They will not
work on earlier versions of Elgg because they use functions introduced
in Elgg 1.8. If any of the plugins use a function that is deprecated in a
future release of Elgg, then they will work for two subsequent major
releases. Using a deprecated function produces a warning message
that tells the developer how to update the code. The deprecation
process is documented in /documentation/coding_standards/
deprecation.txt.

Plugin skeleton
All the most basic plugin requires is a directory and two files. Let's get started.

Create your plugin directory
Plugins live in the /mod directory within Elgg. Each plugin has its own directory. The
directory name should describe the plugin's function. For our plugin, we will create
a directory called hello_world.

Chapter 7

[139]

Plugin manifest
The manifest.xml file gives Elgg details about the plugin to display on the plugin
page in the administration area. The required fields are plugin name, author name,
plugin version, description, and the Elgg release that the plugin is created for. For
more information on plugin manifests, read http://docs.elgg.org/Manifests.

Copy the manifest file from /documentation/plugins/skeleton into the hello_
world directory and then edit it so that it describes this plugin. It should look similar
to the following code:

Start script
When you press the power button on your computer, it boots up. This boot process
gets the computer ready for you to write e-mails or use the web. Elgg also has a boot
sequence that loads each activated plugin's start script.

Create an empty file named start.php in hello_world. The plugin skeleton looks
like the following:

http://docs.elgg.org/wiki/Manifests
http://docs.elgg.org/wiki/Manifests

Creating Your First Plugin

[140]

Activating the hello world plugin
Go to the Plugin page in the administration area of your test site. The Hello, World
plugin should be listed last on this page as it is the newest plugin.

Activate it. This is your first plugin (even though it does not change the site yet).

Register for the init, system event
Every time a web page is requested from an Elgg site, the Elgg start script runs
(located at engine/start.php). The overall sequence of the script is as follows:

1.	 Load Elgg's libraries and configuration settings.
2.	 Load the plugin's start scripts.
3.	 Trigger the init, system event.

The first two stages load code, connect to the database, and load configuration
information. Then, the init, system event indicates that the loading has finished
and it is time to run initialization functions. During initialization, a plugin tells the
engine what capabilities it has and when its functions should be called. For example,
a plugin can ask to be called whenever a comment is posted on the site or the plugin
can add an item to the site menu. Once initialization finishes, Elgg begins to handle
the request for the web page.

In order for the Hello, World plugin to run during initialization, we need to register
for the init, system event. This is done through the elgg_register_event_
handler() function. Add this code into the plugin's empty start.php file:

<?php
/**
 * Hello world plugin
 */

 elgg_register_event_handler('init', 'system',
 'hello_world_init');

 function hello_world_init() {
 // do nothing right now
}

Chapter 7

[141]

When Elgg loads the plugin's start.php file, elgg_register_event_handler() is
executed, which registers the function hello_world_init() for the init, system
event. hello_world_init() does not do anything yet, but we will be adding to it
throughout this tutorial.

The init, system event is one of many available in Elgg's event system. Plugins use
the event to register callback functions that run whenever certain things occur. The
events could be a user logging in, a blog post being published, or a user updating
her profile. For more information on events, read http://docs.elgg.org/Events_
Overview. A list of events is available at http://docs.elgg.org/List_of_Events.

Adding a new route
Now that we have an initialization function in our plugin, we want to start receiving
requests for web pages. This is done by registering with Elgg's routing system.
The routing system works by checking the first segment of a URL against a list of
registered page handlers. A page handler is a function that responds to a request
from a web browser (in MVC terminology, it is a controller). As an example, if Elgg
receives a request from a web browser for Brett's latest blog posts:

http://example.org/blog/owner/brett

it calls the page handler registered for the blog identifier. The other segments of
the URL are passed to the page handler in an array. The blog page handler in this
example receives the following array:

$page = array('owner', 'brett');

Based on these URL segments, the page handler gathers the appropriate data and
gives it to the view system to render into a web page.

Register for the identifier hello with our Hello, World plugin. The start.php file
looks like the following code snippet:

<?php
/**
 * Hello world plugin
 */

elgg_register_event_handler('init', 'system', 'hello_world_init');

function hello_world_init() {
 // register to receive requests that start with 'hello'
 elgg_register_page_handler('hello', 'hello_page_handler');

http://docs.elgg.org/wiki/Events_Overview
http://docs.elgg.org/wiki/Events_Overview
http://docs.elgg.org/wiki/List_of_Events
http://docs.elgg.org/wiki/List_of_Events
http://example.org/blog/owner/brett
http://example.org/blog/owner/brett

Creating Your First Plugin

[142]

}

function hello_page_handler($page, $identifier) {

 echo "request for $identifier $page[0]";

 // return true to let Elgg know that a page was sent to browser
 return true;
}

In hello_world_init(), we added a call to elgg_register_page_handler(), which
tells Elgg to call the function hello_page_handler() when a request starts with
hello. If a request is received for http://example.org/hello/world, then the echo
statement outputs the string request for hello world back to the browser. Try replacing
world with other words or add another URL segment and display that one, too.

Creating a web page
People will think our website is broken if our plugin outputs plain text back to
the web browser. In this step, we create a script to handle a request and produce
HTML. It is also our first introduction to Elgg's view system, which is responsible for
rendering data into HTML.

In your plugin's directory, create a sub-directory named pages. In the pages
directory, create the sub-directory hello_world. Finally, create a file in this directory
named world.php. The plugin structure now looks like the following:

Neither the pages nor the hello_world directories are required, but they are
recommended by the Elgg developers as providing good organization and support
for future features.

The world.php file has the code to create a web page, as follows:

<?php
/**
 * hello, world page
 */

http://example.org/hello/world

Chapter 7

[143]

$title = "My first page";
$content = "Hello, World!";

$vars = array(
 'content' => $content,
);
$body = elgg_view_layout('one_sidebar', $vars);

echo elgg_view_page($title, $body);

First, we set the title and the content of the page. Next, we pass the content into
elgg_view_layout() through the associative array $vars. (Passing variables
this way is standard with the views system. We will be discussing this later in the
chapter.) The layout function takes our content and positions it within a layout that
has a main content area and a single sidebar. Finally, elgg_view_page() assembles
the entire web page and the echo statement sends it to the browser.

Update routing
With this script we can create a web page, but we still need to connect the script to
our page handler. This is done in the page handler by including the script, as follows:

function hello_page_handler($page, $identifier) {

 $plugin_path = elgg_get_plugins_path();
 $base_path = $plugin_path . 'hello_world/pages/hello_world';

 // select page based on first URL segment after /hello/
 switch ($page[0]) {
 case 'world':
 require "$base_path/world.php";
 break;
 default:
 echo "request for $identifier $page[0]";
 break;
 }

 // return true to let Elgg know that a page was sent to browser
 return true;
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Creating Your First Plugin

[144]

If a request is received for http://example.org/hello/world, then the page
handler includes the world.php script that we just created and executes the code.
This sends our new web page to the requester:

Besides sending an actual web page to look at, we also set the title of the page in
elgg_view_page(). When you view the page, the title appears in the browser title
bar or tab.

To experiment, try changing the layout. Besides one_sidebar, Elgg also has one_
column and two_sidebar layouts. The layout view files are located with Elgg's
directory structure at /views/default/page/layouts/. The top of each file lists
what parameters it accepts. For example, to add text to the sidebar use a key of
sidebar in the $vars array.

Add to the site menu
We have one more step before visitors to the site can find our new web page:
adding it to the site menu. In the default theme, the site menu is the set of tabs
above the content area. We register an item for the menu in our initialization
function, as follows:

 function hello_world_init() {

 elgg_register_page_handler('hello', 'hello_page_handler');

 // add a menu item to primary site navigation
 $item = new ElggMenuItem('hello', 'Hello', 'hello/world');
 elgg_register_menu_item('site', $item);
}

http://example.org/hello/world

Chapter 7

[145]

When we create the ElggMenuItem object, we pass the name, display text, and the
URL we want the menu item to link to. The name must be a unique identifier for that
menu. The URL can be partial as in our example. Elgg automatically appends the
site's canonical URL to addresses that it detects as partial. The last line of code adds
the menu item to the site menu so that it looks like the following screenshot:

Extending the page handler
Our last modification to the page handler is adding another web page so that we
have two pages:

•	 http://example.org/hello/world/

•	 http://example.org/hello/dolly/

The second page will display Hello, Dolly! You may want to stop reading now and
try adding this page without the instructions as a test of your new knowledge. If not,
then the updated page handler looks like the following code snippet:

function hello_page_handler($page, $identifier) {

 // file path to the page scripts
 $plugin_path = elgg_get_plugins_path();
 $base_path = $plugin_path . 'hello_world/pages/hello_world';

 // select page based on first URL segment after /hello/
 switch ($page[0]) {
 case 'world':
 require("$base_path/world.php");
 break;
 case 'dolly':
 require("$base_path/dolly.php");
 break;
 default:

http://example.org/pg/hello/world/
http://example.org/pg/hello/world/
http://example.org/pg/hello/world/
http://example.org/pg/hello/dolly/
http://example.org/pg/hello/dolly/

Creating Your First Plugin

[146]

 echo "request for $identifier $page[0]";
 break;
 }

 // return true to let Elgg know that a page was sent to browser
 return true;
}

Add a second file to the pages/hello_world directory named dolly.php and put
this code in it:

<?php
/**
 * hello, world page
 */

$title = "My second page";
$content = "Hello, Dolly!";

$vars = array(
 'content' => $content,
);
$body = elgg_view_layout('one_sidebar', $vars);

echo elgg_view_page($title, $body);

When you point your web browser to the new URL, you should see the welcome
for Dolly.

Add a sidebar menu
Users can navigate to one of the pages, but how do they find the other one? In this
section, we add a sidebar menu so that users can choose between the two different
hello pages. To create the sidebar menu, we register our menu items in the plugin's
initialization function.

function hello_world_init() {

 elgg_register_page_handler('hello', 'hello_page_handler');

 // add a menu item to primary site navigation
 $item = new ElggMenuItem('hello', 'Hello', 'hello/world');
 elgg_register_menu_item('site', $item);

 // add sidebar menu items that only show up on 'hello' pages

Chapter 7

[147]

 elgg_register_menu_item('page', array(
 'name' => 'world',
 'text' => 'Hello world',
 'href' => 'hello/world',
 'contexts' => array('hello'),
));
 elgg_register_menu_item('page', array(
 'name' => 'dolly',
 'text' => 'Hello dolly',
 'href' => 'hello/dolly',
 'contexts' => array('hello'),
));
}

This time we use an alternate method of calling elgg_register_menu_item() by
passing an associative array rather than an ElggMenuItem object. The end result is
the same, but it can be easier to set several parameters with the array approach. In
this case, we are not only setting the name, text and URL, but also configuring the
context for the menu items. Setting the context to 'hello' results in these menu
items only displaying when we are serving requests that start with 'hello'. If we
changed the contexts value to array('hello', 'blog'), the menu items would
display on hello and blog pages. To read more on context, visit http://docs.
elgg.org/Context. For more information on the menu system, visit the Elgg blog
(http://blog.elgg.org) and read the series of articles on using the menu system.

If you view one of the hello pages, you should see the new menu items in the sidebar
as shown in the preceding screenshot.

http://docs.elgg.org/Context
http://blog.elgg.org/

Creating Your First Plugin

[148]

You need a sidebar to have a sidebar menu
If you modified the layout of the pages earlier, then return them to
using the 'one_sidebar' layout. With the 'one_column' layout,
there is nowhere for the sidebar menu to be displayed.

Language support
Our plugin only supports the English language. Adding support for other languages
requires two modifications:

1.	 Use elgg_echo() instead of hard-coded strings.
2.	 Add a language file.

Anywhere we used a string that is displayed, we are replacing it with a call to the
elgg_echo() function. For example, in world.php:

$content = "Hello, World!";

This should be changed to the following:

$content = elgg_echo('hello:world');

The function elgg_echo() takes in a descriptor string and outputs the appropriate
string in the user's chosen language. The descriptor strings should describe the text
and its purpose. For example, if you had a long welcome message on your page, the
descriptor string could be 'hello:welcome:msg'. You can use underscores, hyphens,
or colons to separate words in the descriptor strings. For readability, avoid stringing
together words such as this: 'thisismydescriptorstring'. Another best practice
is to namespace the descriptor strings based on the plugin. This means you should
append an identifier to all the descriptors as in the following language file. Doing this
prevents two plugins from using the same descriptor with different definitions.

<?php
/**
 * English language file
 */

$mapping = array(
 'hello:world' => "Hello, World!",
 'hello:dolly' => "Hello, Dolly!",
 'hello:menu' => "Hello",
 'hello:sidebar:world' => "Hello world",
 'hello:sidebar:dolly' => "Hello dolly",
);

add_translation('en', $mapping);

Chapter 7

[149]

As you gain more experience and look at other plugins, it will become easier to
select the descriptor strings. Continue the replacement for any string that appears
on the plugin's web pages using the preceding code for the descriptor strings.
After the replacement is finished, create the directory languages in your plugin's
main directory. In the languages directory create a file named en.php and copy the
preceding code into it.

This file creates an array that maps from the descriptor string to the display string.
When elgg_echo('hello:world') is called, it outputs Hello, World!. If we wanted
to include French on the site, then we would create a file called fr.php, create
the mapping for that language, and then call add_translation(), specifying the
language code as 'fr'. The two letter codes come from the ISO 639-1 short code
definition. Elgg's primary language file (/languages/en.php) contains a long list of
these codes at the bottom of the file.

Personalizing the content
A generic "Hello, World" greeting is not exactly a warm welcome to the site. Let's
make the greeting more personalized by using the user's name. Modify world.php to
look like the following code snippet:

<?php
/**
 * hello, world page
 */

$user = elgg_get_logged_in_user_entity();

$title = "My first page";

$content = elgg_echo('hello:user', array($user->name));

$vars = array(
 'content' => $content,
);
$body = elgg_view_layout('one_sidebar', $vars);

echo elgg_view_page($title, $body);

Creating Your First Plugin

[150]

The first line of code gets the logged in user. That gives us access to all sorts of
information about the user such as: name, e-mail address, last login date, join date,
profile icon, and more. We are using the user's display name in the greeting message.
The elgg_echo() function works like sprintf() and can accept parameters that are
inserted into the outputted string. Update the 'hello:user' definition in en.php to
be as follows:

'hello:user' => "Hello, %s!",

so that elgg_echo() replaces %s with the user's name. The output of the page looks
like the following screenshot:

To experiment more with Elgg's API, replace the welcome text with the user's icon
using elgg_view_entity_icon(). When $user is passed to this function, it returns
the HTML for the icon.

Organizing your content into views
Think about what the code for world.php would look like if we added a few images,
a list of important information, a site logo, and contact information for the site
administrator. The code would become very complicated and probably very ugly.

We may also want to have the same content appear on multiple web pages. Maybe
the site logo and contact information belongs on every page. To do this, we could
copy that portion of the code into all the pages. When we want to make one change
to that content, we would have to change every file. This is beginning to look painful.

There is a solution. Elgg has a views system that enables us to break our content
into sections and then include it in our pages with a single function call. Each view
is a chunk of HTML code. This is how Elgg creates the topbar, header, sidebar, and
footer on each page. There is a view for the topbar, a view for the header, and so on.

Chapter 7

[151]

A greeting view
Both of our pages contain a greeting. In world.php, it is currently a personalized
greeting. In dolly.php, it is a hard-coded greeting for Dolly. Let's create a single
view that can handle both of these uses.

HTML views live in the views/default directory of a plugin. Create the views
directory and then create the default directory underneath views. It is a good idea
to store your views in a directory named after your plugin to prevent conflicts with
other plugins. Create a directory called hello_world in the default directory.
Create the file greetings.php in hello_world so that the directory structure looks
like the following image:

Open greetings.php and add this to it:

<?php
/**
 * Content area greeting
 *
 * @uses $vars['name'] The name of a user
 */

echo elgg_echo('hello:user', array($vars['name']));

Then, update world.php to look like the following code snippet:

<?php
/**
 * hello, world page
 */

Creating Your First Plugin

[152]

$user = elgg_get_logged_in_user_entity();

$title = "My first page";

$params = array('name' => $user->name);
$content = elgg_view('hello_world/greetings', $params);

$vars = array(
 'content' => $content,
);
$body = elgg_view_layout('one_sidebar', $vars);

echo elgg_view_page($title, $body);

There are a few things to note about these changes.

First, we are using an associative array to pass the name of the user to the 'hello_
world/greetings' view. View files always access the variables passed to them
through the $vars array. We document the variable that this view accepts at the top
of the file with the @uses tag. Most of Elgg's views have similar documentation.

Second, the view was located in our plugin at views/default/hello_world/
greetings.php and is named 'hello_world/greetings'. The name of the view
always starts after the default directory.

Third, the call to elgg_view() returns the output of the view as a string. All of the
functions that begin with elgg_view do this.

What is "default"?
There are different types of views in Elgg. The default views
produce HTML. That is why you created a directory under views
called default. There are other views that produce RSS feeds or
JSON data. Elgg knows what views to use based on the request. This
enables plugins to use the same handler logic for different types of
outputs. For further reading on Elgg's view system and view types in
particular, visit http://docs.elgg.org/Engine/Views.

To update dolly.php to use the view, change the following:

$content = "Hello, Dolly!";

To the following:

$vars = array('name' => 'Dolly');
$content = elgg_view('hello_world/greetings', $vars);

http://docs.elgg.org/wiki/Engine/Views
http://docs.elgg.org/wiki/Engine/Views

Chapter 7

[153]

The output of the pages has not changed, but if we wanted to change the text on
both pages to be a heading, we would only have to change a single view. Change the
greeting view (hello_world/views/default/hello_world/greeting.php) to the
following code snippet:

<?php
/**
 * Content area title
 *
 * @uses $vars['name'] The name of a user
 */

$greeting = elgg_echo('hello:user', array($vars['name']));
echo elgg_view_title($greeting);

The greetings on both pages are much larger now.

A stats view
There is a lot of blank space on those pages so we are adding another view that tells
the user how many blog posts he has written. In world.php, we calculate the number
of posts and pass it to a new 'hello_world/blog_stats' view. The calculation
code uses elgg_get_entities like the following code snippet:

// count number of blogs by user
$options = array(
 'type' => 'object',
 'subtype' => 'blog',
 'owner_guid' => $user->guid,
 'count' => true,
);
$num_blogs = elgg_get_entities($options);

// add the stats view to the content for page
$params = array('num_blogs' => $num_blogs);
$content .= elgg_view('hello_world/blog_stats', $params);

Elgg provides a set of functions for getting and displaying information about content
from the database and elgg_get_entities() is one of them. There will be more
information about these functions in the next chapter.

Creating Your First Plugin

[154]

What is a GUID?
GUID stands for Globally Unique IDentifier. It is a numerical
value assigned to every user, group, blog post, or any other kind of
content. No two entities in Elgg's database share the same GUID. In the
stats view, we passed the GUID of the user to get a count of blog posts.

Add a blog_stats.php file to the views/default/hello_world directory and add
the following code:

<?php
/**
 * Example view that displays some blog stats
 *
 * @uses $vars['num_blogs'] Number of blogs a user has published
 */
?>
<p>
<?php echo elgg_echo('hello:blog:stats', array($vars['num_blogs']));
?>
</p>

After adding the 'hello:blog:stats' string to the language file, the end product
will look like the following screenshot:

Now that you have this basic plugin skeleton, feel free to experiment by creating
additional views or accessing different data about the user. For a list of variables that
are available for a user, see http://docs.elgg.org/ElggUser.

http://docs.elgg.org/ElggUser
http://docs.elgg.org/ElggUser

Chapter 7

[155]

Review
We covered a lot of content in this example plugin. We introduced four key
components of Elgg, as follows:

1.	 Events: A plugin can register a function to be called when something
happens, like when a user posts a comment. We used the event system for
plugin initialization.

2.	 Page handling: Elgg handles routing requests to registered page handler
functions and provides the segments of the requested URL. A plugin's page
handler function loads the code that creates the web page.

3.	 Views: Views are chunks of HTML that can be reused. They provide a means
of organizing your presentation code.

4.	 Multi-lingual support: By defining a language mapping and using
elgg_echo() for all displayed text, plugins can support multiple languages.

More information about views and events are included in the next chapter. We will
also learn about Elgg's action system, which is the primary method for plugins to
add new content to the database.

Before we work through more examples in the next chapter, we will cover
information about debugging plugins. How quickly you can find and fix a plugin's
bugs may be the biggest factor on how long it takes to write a plugin.

Debugging
Programmers develop good coding habits to reduce the number of bugs in their
code. They never eliminate them. Good debugging skills are a result of experience,
a solid understanding of how the software works, logical thinking, and dogged
persistence. If you have limited experience debugging code, then the process is a lot
like how auto mechanics work:

1.	 Collect symptoms of the problem.
2.	 Match symptoms to possible causes.
3.	 Begin eliminating potential causes.
4.	 Repair most probable cause.
5.	 Test the repair to confirm that the problem is fixed.

The more you work through this process, the more it will become second nature
to you.

Creating Your First Plugin

[156]

This section introduces the tools that are available for debugging Elgg plugins.
Debugging plugins can be challenging because there can be problems on the server
or the client and the bug can be in PHP, HTML, CSS, or JavaScript code. Because
of this, a good web developer is comfortable with a set of tools that span these
languages: debuggers, web browser developer tools, and various logging techniques.

Debugging to the log
The web server on your server probably writes information to two log files on a
regular basis: an access log that tracks the requests made for web pages and an error
log that records when something goes wrong. By default, PHP sends its logging
information to the web server's error log file. Locate the error log on your server and
glance through it. For help with finding the error log, see http://docs.elgg.org/
Server_error_log. If there are PHP messages in the log, then they will include the
level of the message (error, warning, notice), the text of the message, and the line
number and name of the file where the problem occurred.

[Fri Jul 01 23:40:02 2011] [error] [client 192.168.1.101] PHP
 WARNING: 2011-07-01 23:40:02 (EDT): "Invalid argument supplied for
 foreach()" in file
 /var/www/mod/developers/views/default/developers/log.php (line 10)

To write something to the log, use the PHP function error_log(). Test this out by
adding the following statement to the world.php file in the Hello, World plugin:

error_log('Creating world page');

View the page with your browser and then check the error log again. There should
be a new entry in the log that contains the text Creating world page. Putting in a
debugging statement like this is a sanity check. You are verifying that the page or
function with the logging call is actually being called.

Anything that can be turned into a string can be passed to error_log(). In the same
file, try the following code:

error_log("User's email is $user->email");

You can add as many variables as you want this way, but they need to be strings or
numbers. For other variable types such as arrays and objects, use the recursive print
function, print_r():

error_log("User object: " . print_r($user, true));

It can be difficult to read, but it has all the information about the user object.
Just remember to set the second argument of print_r() to true so that it returns
a string.

http://docs.elgg.org/wiki/Server_error_log
http://docs.elgg.org/wiki/Server_error_log

Chapter 7

[157]

Watching the log file
1. To see if there are new lines being added to the log file, use the
tail command on Linux or Macs: tail –f error_log.
2. Windows users need to download and install software to do
this. This web page has information on possible Windows tools:
http://stackoverflow.com/questions/113121.

To easily turn logging on and off, use Elgg's elgg_log() function rather than error_
log(). It takes two parameters: the log message string and the trace level for this
message.

elgg_log("Completing initialization of plugin', 'WARNING');

If the trace level of Elgg is set to 'WARNING' or lower, then the message is logged.

Debugging to the screen
There are times when it is convenient to send debugging information to the web
browser. We already turned on the display of fatal errors on the Developer Settings
page so those errors are sent to the browser. If you haven't seen one of those errors
yet, then try adding the following line of code to your world.php:

echo $bad->getGUID();

It will spit out an error message such as: Fatal error: Call to a member function
getGUID() on a non-object in /var/www/mod/hello_world/world.php on line 34. A best
practice when calling a method on an object like we did in the preceding section is to
test whether the object exists:

if ($user) {
 echo $user->getGUID();
}

Logging information is sent to the web browser by using Elgg's elgg_dump()
function and enabling the Log to screen option on the Developers Settings page. To
test this, add the following code to world.php:

elgg_dump("hello, logging!");
$test = array(1,2,3);
elgg_dump($test);

http://stackoverflow.com/questions/113121
http://stackoverflow.com/questions/113121

Creating Your First Plugin

[158]

This should be displayed on the web page at the bottom of the screen, as shown in
the following screenshot:

Debugging PHP through an IDE
The most powerful tool for debugging is an IDE's debugger. With a debugger, you
can set breakpoints in the code, step through the code line-by-line, inspect variables
at different points in the code, and look through the call stack to see how a function
was called.

To use a debugger, a PHP extension must be installed on the server. Xdebug is the
most popular debugging extension. There are instructions for installing it on its
documentation page (http://xdebug.org/docs/). The PHP extension handles
communication between the server and the debugger running in the IDE. Once the
extension is installed and configured, the project in the IDE must be configured to
talk to the server.

http://xdebug.org/docs/

Chapter 7

[159]

Firebug and other browser development tools
There are tools available for every major browser for debugging HTML, CSS,
and JavaScript. One of the first was Firebug (http://getfirebug.com/). It is an
add-on for Mozilla Firefox and has become the standard that other web browser
development tools are judged by. With it you can inspect and modify HTML and
CSS, debug Javascript, and monitor Ajax requests.

http://getfirebug.com/

Creating Your First Plugin

[160]

Let's modify a CSS property as an example of what is possible with Firebug. This
is a common activity when perfecting a plugin's CSS. Doing this lets you quickly
experiment without having to edit a file and reload a page for every change. Select
the inspect tool next to the bug icon:

As you move the mouse cursor over the page, Firebug outlines the HTML elements.
Mouse over the content area title and select it.

After it is selected, the CSS that controls its appearance is shown in the right Firebug
window and its HTML is highlighted in the left. Either the HTML or the CSS can be
edited to try out a bug fix. This is much easier than repeatedly editing the original
file and reloading the web page in your browser. To add a CSS property to the
content area title, right-click on the h2 selector in the right Style panel and select New
Property. Add the following property to change the background of the title to yellow:

background-color: yellow;

Chapter 7

[161]

The more you use a tool like this, the faster your debugging will be on the client side.
For other browsers, do a search on the browser's name plus web developer tool. There
is an abundance of information about these tools on the web.

Elgg developer tools
We have already used the Developer Settings page, which is provided by the
developer tools plugin. Two other capabilities provided by this plugin are inspecting
Elgg's configuration and previewing theming elements.

Inspect
The inspect tool enabled developers to explore Elgg's configuration. In the Hello,
World plugin, we registered for the init, system event, but what if we had
misspelled system? Our handler function would not have been called and we would
be wondering why the plugin was not working. The inspect tool allows us to confirm
that we properly registered for an event or that we are using the correct view name
with elgg_view().

To use the tool, a developer selects the desired type of information and clicks submit.
The tool displays that information in a tree that can be explored. In the following we
are checking what functions have been registered for the create,friend event:

Creating Your First Plugin

[162]

Theming sandbox
The theming sandbox lets developers and designers view what elements are available
for building and styling web pages. Each of its pages shows an element that can be
used on a page with information about the CSS markup being used from Elgg's CSS
framework. It is a work in progress, but in the future it should include further view
information and a method for viewing the HTML source of each component.

Summary
This chapter guided you through the creation of your first plugin. Along the way we
covered how to create views, register for events, and use the page handling system.
We also included some advice on debugging plugins. All of this prepares you to
continue the learning process in the next chapter, where we create nine different
plugins that each demonstrates a new capability of Elgg.

Customization through
Plugins

The previous chapter introduced new concepts by incrementally adding to a single
plugin. Along the way, it covered plugin initialization, language files, creating views,
page handling, the event system, and adding sidebar menus.

This chapter continues the learning process through a series of nine lessons, each
with its own plugin. Every lesson explains a new aspect of Elgg that you will need
to know to customize your site. The lessons define a problem that you are trying to
solve, offer a general solution, and then demonstrate a specific solution through the
creation of a plugin. The last section of each lesson offers suggestions on extending
that plugin or provides ideas on writing a new plugin that reinforces what you have
just learned.

The lessons are ordered by increasing complexity. Some of them will build off
previous lessons, but all of them assume that you have worked through the Hello,
World plugin from the previous chapter. Be sure to test the plugins often. There are
particular points where testing is recommended, but do not let that stop you from
testing at other points in the lesson.

The code for all the examples can be downloaded from http://www.packtpub.com/
elgg-18-social-networking/book. The code contains additional comments from
what is shown in the code snippets. There is also additional error checking that was
left out of the lessons for the sake of clarity.

You will get the most out of the lessons if you work through them step-by-step. If
you prefer not to type in the code listed in this chapter, then copy chunks of code
from the downloaded plugins into your plugins as you work through each step. Try
changing portions of the code or commenting out sections. Breaking code and then
putting it back together is a great way to learn. As you figure out how things work,
add comments in the code to help you remember in future.

http://www.packtpub.com/elgg-18-social-networking/book
http://www.packtpub.com/elgg-18-social-networking/book

Customization through Plugins

[164]

This chapter covers the following:

•	 Overriding language strings
•	 Overriding a view
•	 Extending a view
•	 Using Elgg's event system
•	 Creating a widget
•	 Adding user settings
•	 Adding JavaScript
•	 Using a plugin hook
•	 Adding a plugin setting for administrators
•	 Working with forms and saving data

Lesson 1: Changing wording
This lesson expands your knowledge of Elgg's language system.

Problem
There is wording that you want to change. Elgg says 'comments', but you prefer
'responses'. Elgg says 'Register', but you prefer 'Sign up'. You may think that
those changes involve editing lots of files, but the solution is much easier than that.

Solution
Remember the elgg_echo() function from last chapter that mapped strings such
as 'hello:world' to the proper phrase in the user's language ("Hello, World!" in
English, "¡Hola, Mundo!" in Spanish, and so on)? Besides providing translations, we
can also take advantage of elgg_echo() to easily change wording. We do this by
overriding the language mapping using a plugin.

Example
In this example, we will change the 'comment' language to 'response'
language so that instead of displaying Post comment after a blog post like
in the following screenshot:

Chapter 8

[165]

It will display Post a response like the following screenshot:

Step 1: Create the plugin structure
Just as we did with the Hello, World plugin, create a directory for the plugin in
/mod called wording and add the files manifest.xml and start.php. As we are
working with the language system of Elgg, add the languages directory and the
en.php file. The plugin structure should look like the following image:

Update the manifest file to reflect the purpose of this plugin. The start.php file will
be left empty (we include it so that Elgg knows that this is a proper plugin.) All of
our work will be in the en.php language file.

Customization through Plugins

[166]

Step 2: Find the language strings
We have two options for finding the language strings that Elgg uses for the
comment text:

•	 Use the editor to do a search through all the PHP files in Elgg looking for the
string "Post comment". This approach finds the mapping in /languages/
en.php (the primary language file of Elgg):
'generic_comments:add' => "Leave a comment",
'generic_comments:post' => "Post comment",
'generic_comments:text' => "Comment",
'generic_comments:latest' => "Latest comments",

•	 Go to the Developers Settings page and enable the option for viewing the
raw translation strings. This option effectively turns off elgg_echo() so that
the comment box looks like the following screenshot:

Step 3: Override the language string
Open the plugin's language file, en.php, and define the language mapping:

$english = array(
 'generic_comments:post' => "Post a response",
 'generic_comments:text' => "Response",
);

add_translation("en", $english);

Copy the plugin onto the server and activate it. When you view a page with a
comment box, you will see the response language instead of comment language.
Completing this task requires searching for any other use of the word comment in the
language files (both core and plugins) and adding them to this plugin's language file.

Chapter 8

[167]

Plugin order matters

To modify the language strings used in a plugin, your plugin must
be loaded after that plugin. This means your plugin must be listed
after the plugin being modified on the Plugin page.

Exercise
To practice this further, change all the language for the blog plugin so that instead of
posting a blog, users post rants. Try using both the technique of searching through
files and using the language option on the Developer Settings page. When you are
done, you should see something like the following screenshot:

Lesson 2: Modifying a section of a page
Overriding a view is covered in this lesson.

Problem
There is a section of the Elgg page structure that you want to change. Perhaps you
want to include an ad in the footer or rearrange the topbar. You could search for that
specific HTML code in Elgg and hack it to get what you want, but then upgrades to
the latest version of Elgg would be difficult. You want to do this the right way.

Customization through Plugins

[168]

Solution
Elgg divides up its page structure into views. As we discussed in the last chapter,
a view is a chunk of HTML code. The topbar and header are views. The search box
is a view inside the header view. By changing one of these views, we change every
Elgg page that uses it. With Elgg, the primary way to change a view is to override it.
Overriding a view results in our HTML replacing the HTML of the core view.

Example
The default Elgg theme has a header with the site name, a search bar, and a set of
menu tabs:

We are adding a tagline below the site name, as shown in the following screenshot:

Step 1: Find the view to override
All the HTML views for the core Elgg engine are stored in /views/default. Looking
through all the directories could take a lot of time, so we will try two different
approaches to find the view with the site name in it:

1.	 Using Firebug or the equivalent tool for your browser, start the inspect tool
and click on the site title in the header. The Firebug panel will display the
HTML code for that area of the page. You will notice a link with a class of
elgg-heading-site:

Chapter 8

[169]

2.	 Searching for the string elgg-heading-site should find the view that we
want to override.

Another option is using the Developer Settings page. It has a setting called Wrap
views. When it is enabled, comments are placed around each view with the name of
the view in the comment. By configuring Firebug to show comments, we can use the
inspect tool to select the site name and find that it is wrapped by the comment for the
'page/elements/header_logo' view.

We now know that the view is located at /views/default/page/elements/
header_logo.php.

Customization through Plugins

[170]

Step 2: Create the plugin structure
We call our plugin custom_logo. It needs a plugin manifest file and start.php. Add
those files and update the manifest to describe the purpose of the plugin.

Overriding a view requires that we add a view in the same relative location in our
plugin as it exists in the default Elgg theme. As the view is located at:

/views/default/page/elements/header_logo.php

We create our view at:

/mod/custom_logo/views/default/page/elements/header_logo.php.

When Elgg detects the view there, it automatically replaces the core view with
our view.

The last file our plugin needs is a CSS view so that we can style our tagline. Create a
file named css.php in a custom_logo directory under views/default/. The reason
that we put our plugin's CSS view in a directory named after the plugin is to prevent
conflicts with other plugins. This is a best practice for plugin development.

After the files and directories have been created, we have the following
plugin structure:

Step 3: Edit the logo view
We could start with a blank view or we could copy the current view code into our
view as a starting point. Let's copy the code as we only want to add the tagline. After
we do that, our view's code looks like the following:

<?php
/**
 * Elgg header logo

Chapter 8

[171]

 */

$site = elgg_get_site_entity();
$site_name = $site->name;
$site_url = elgg_get_site_url();
?>

<h1>
 <a class="elgg-heading-site" href="<?php echo $site_url; ?>">
 <?php echo $site_name; ?>

</h1>

Now is a great time to make a small edit, copy the plugin to our server, and make
sure we are changing the correct view. Remember that it is a good idea to test your
plugins often as you write them. Insert some arbitrary text directly above the <h1>
element and then check that it appears in the header when you view the website.

To add a tagline, we append our text to the bottom of the view and wrap it in a
heading tag:

<?php
/**
 * Overriding the page/elements/header_logo view
 */

$site = elgg_get_site_entity();
$site_name = $site->name;
$site_url = elgg_get_site_url();
?>

<h1>
 <a class="elgg-heading-site" href="<?php echo $site_url; ?>">
 <?php echo $site_name; ?>

</h1>
<h2 class="custom-logo-heading">
 Hello, tagline!
</h2>

Customization through Plugins

[172]

The tagline appears in the header, but is extremely difficult to read due to its position
and color. We need to style it with CSS, as follows:

Step 4: Style the header
Before we add any CSS to the 'custom_logo/css' view, we need to inform Elgg
that we want that view included with the main CSS file. We do this in our start.php
file, as follows:

elgg_register_event_handler('init', 'system', 'custom_logo_init');

function custom_logo_init() {
 elgg_extend_view('css/elgg', 'custom_logo/css');
}

This code tells Elgg to add the output of 'custom_logo/css' to that of 'css/elgg'.
If we wanted to add CSS to the admin theme instead, then we would extend the
'css/admin' view.

Remember to turn off caching
Whenever you are writing new plugins or themes, turn off caching.
Otherwise, your changes may not show up.

In our plugin's css.php file, we add the following:

.elgg-page-default .elgg-page-header > .elgg-inner {
 height: 120px;
}
.custom-logo-heading {
 color: white;
 font-family: Georgia,times,serif;
 font-style: italic;
 font-size: 1.2em;
 text-shadow: 1px 2px 4px #333333;
}

Chapter 8

[173]

The first statement makes the header taller so that our tagline will not overlap with
the site menu. The second part styles the tagline text giving it the appearance of
white text set off by a dark shadow. When you view your site now, it should look
like the screenshot from the beginning of this lesson.

Exercise
You can continue to work with the custom_logo by replacing the site name heading
with an image. You can also pull the tagline text from the optional site description
that is set on the Basic Settings page in the administration area. The text is retrieved
like the following:

<h2 class="custom-logo-heading">
 <?php echo $site->description; ?>
</h2>

To practice overriding views, try replacing the footer of Elgg with your own custom
footer. After overriding views a few times, the process of finding the view and
setting up the plugin will become easy for you. Then, you can focus on writing the
HTML code and the CSS.

If you override a view that belongs to a plugin, then your plugin must be loaded
after that plugin.

Lesson 3: Adding new content to a page
Extending a view is demonstrated in this lesson.

Problem
Instead of modifying an area of a page as in the preceding lesson, you want to
add new content. This could be including a "Share this" link under every blog, a
welcome message to visitors under the header, or a Twitter feed in the sidebar. What
is the best way to do this with Elgg?

Solution
Instead of overriding a view, we can extend it. Extending a view adds our content
directly below (or above) the view. This is the easiest way to insert new content into
a page.

Customization through Plugins

[174]

Example
In our example, we would like to add some tips on how to use the site on each page.
A good location for these tips is under the sidebar menu. Currently the sidebar looks
like the following screenshot:

We want to add our helpful tip to the sidebar as shown in the following screenshot:

Chapter 8

[175]

Step 1: Find the view to extend
The quickest way to find the view to extend is using the Wrap views option on the
Developer Settings page to wrap all the views with comments as we did in the
preceding lesson. Using Firebug to inspect the HTML, we find that there are many
views due to the navigation system. Just inside the div with the class elgg-sidebar
is a comment for the 'page/elements/sidebar' view. That is the view that we
will extend.

Step 2: Create the plugin structure
We call our plugin sidebar_tip. It needs a plugin manifest file, start.php, a language
file, and our view. We name the view 'sidebar_tip/tip'. Notice how each time
we create a new view, we place it in a directory named after our plugin. Doing this
ensures that another plugin will not accidentally override our view. The structure
looks like the following:

Step 3: Build our view
In our view, we need a heading and the text of the tip. We want our tip area to look
like the other sidebar boxes in Elgg. If you remember from the previous chapter,
there was a page on the Theming Preview for modules. Modules are blocks of
content with a header and a body. Elgg makes it easy to create modules using the
function elgg_view_module(). Using Firebug again, we can check what type of
module is used for the tagcloud. The CSS classes for that module are .elgg-module
and .elgg-module-aside. This means the module type is "aside". Our view with a
hard-coded tip looks like the following:

<?php
/**
 * Tip view - it is added to the sidebar
 */

$title = elgg_echo('sidebar_tip:title');
$text = "This is my test tip";
echo elgg_view_module('aside', $title, $text);

Customization through Plugins

[176]

We need the echo on the last line or our sidebar tip will not be sent to the browser.
Not adding an echo before an elgg_view function is a common mistake for both
Elgg veterans and rookies.

Before testing the plugin, define the language string 'sidebar_tip:title' in
our en.php file and extend the 'elgg_sidebar/extend' view in our plugin's
initialization function.

elgg_register_event_handler('init', 'system', 'sidebar_tip_init');

function sidebar_tip_init() {
 // Add our sidebar_tip/tip view to the sidebar
 elgg_extend_view('page/elements/sidebar', 'sidebar_tip/tip');
}

The plugin is now ready for its first test. In your browser, visit a page with a sidebar
and you should see the test tip that you created.

Step 4: Make the tips random
We want to rotate through a series of tips and have the order be random. We do this
by defining the tips in the language file and then adding a function in start.php
that returns a random tip. The language file looks like the following:

<?php

$english = array(
 'sidebar_tip:title' => 'Random Tip',

 'sidebar_tip:tip1' => 'Never spit into the wind.',
 'sidebar_tip:tip2' => 'You can set your notification options on
 the settings page.',
 'sidebar_tip:tip3' => "See something that shouldn't be here?
 Report it using the whistle icon.",
 'sidebar_tip:tip4' => "RSS is a great way to track activity on
 the site. Look for the orange RSS icons.",
);

add_translation("en", $english);

Chapter 8

[177]

The function that returns the random tip creates a string starting with 'sidebar_
tip:tip' and appends a number. That string is fed into elgg_echo() and out comes
our tip text.

function sidebar_tip_get_tip() {
 $num_tips = 4;

 $select = rand(1, $num_tips);
 return elgg_echo("sidebar_tip:tip$select");
}

If you are not familiar with the function rand(), then you can look
up its documentation by going to http://www.php.net/rand.
In fact, any PHP function can be looked up by visiting
http://www.php.net/<function name>.

To finish the plugin, we replace the hard-coded tip in the view with the following:

$text = sidebar_tip_get_tip();

Each time we load a page, Elgg includes a different tip.

Exercise
To extend this example, determine if the viewer is logged in and display a message
encouraging visitors to join the site.

if (elgg_is_logged_in()) {
 $title = elgg_echo('sidebar_tip:title');
 $text = sidebar_tip_get_tip()
} else {
 // alternate content here for visitors
}
echo elgg_view_module('aside', $title, $text);

To practice extending views, try extending 'page/element/header' so that you can
post announcements to your users.

Adding content before a view
Sometimes you may want to add content above a view rather than
below it. You can do that by calling elgg_extend_view() and
including a third parameter which sets its priority. Any number
less than 500 will cause your view to be added to the page before
the primary view.

http://www.php.net/rand
http://www.php.net/rand
http://www.php.net/

Customization through Plugins

[178]

Lesson 4: Doing something when X
happens
This lesson explains how to use Elgg's event system.

Problem
Whenever someone joins a group, you want to send an e-mail welcoming them.
Whenever a blog entry is posted, you want to be notified so that you can review its
content. Whenever someone logs in, you want to increase a counter so that you can
proudly post on your front page how many times people have used your site: "3 billion
served". In all of these cases, an event occurs and you want something to happen.

Solution
Elgg has an event system that calls a function when something occurs. When a user
logs in, a login event is triggered within Elgg. Events are triggered for updating
profile fields, joining a group, forming a friendship, uploading a file, or leaving a
comment. When an event occurs, Elgg calls the functions that are registered for that
event. Each function runs and when it is done, control is returned to Elgg.

Example
We want to receive an e-mail whenever someone joins our site. Our site is new and
we want to check that new members are able to validate their e-mail addresses and
give them a personal greeting.

Step 1: Find the event
We have three options for finding an event to use for our new user notification
plugin, as follows:

1.	 Check the Elgg wiki at http://docs.elgg.org/List_of_Events. The
developers FAQ includes a list of the events and a description of when the
events occur.

2.	 Search through the code looking for the string "elgg_trigger_event". This
locates every place in the code where an event occurs. Then, you can narrow
the possibilities based on the names of the events.

http://docs.elgg.org/

Chapter 8

[179]

3.	 Enable logging of events and plugin hooks on the Developers Settings page
and turn off logging to the screen. For this example, register a test user and
then look through the events that were logged. Each event description in the
log includes the event's name and the name of the function that triggered it.
One section of the log should look like the following:

Plugin hook: 'registeruser:validate:password, all' in
 validate_password()
Plugin hook: 'registeruser:validate:username, all' in
 validate_username()
Plugin hook: 'container_permissions_check, user' in
 create_entity()
Event: 'create, member_of_site' in add_entity_relationship()
Event: 'create, user' in create_user_entity()
Event: 'create, metadata' in create_metadata()

Among the different choices, the create/user event looks like the best choice. Each
event is typically described by an action word (create) and a noun (user).

Step 2: Create the plugin structure
This plugin is called new_user_signup. We need a plugin manifest, a start script,
and a language file. The plugin structure looks like the following:

We register for the 'create, user' event in the plugin's initialization function, as
follows:

elgg_register_event_handler('init', 'system',
 'new_user_signup_init');

function new_user_signup_init() {
 elgg_register_event_handler('create', 'user',
 'new_user_signup_notify');
}

We define the new_user_signup_notify() function in the next step.

Customization through Plugins

[180]

Step 3: Write the function that sends the e-mail
Our function that runs when the 'create, user' event is triggered calls elgg_
send_email() to send us an e-mail about the new user. For now, we hard-code the
e-mail address and then create the subject and message body using elgg_echo().

function new_user_signup_notify($event, $type, $user) {

 $to = "me@example.org";

 // get site email address for the from address
 $site = elgg_get_site_entity();
 $from = $site->email;

 $name = $user->name;
 $username = $user->username;

 $subject = elgg_echo('new_user:subject', array($site->name));
 $message = elgg_echo('new_user:body', array($name, $username));

 elgg_send_email($from, $to, $subject, $message);
}

The language strings in en.php are defined like the following:

$english = array(
 'new_user:subject' => "New user signup on %s",
 'new_user:body' => "A new user just signed up with a name of %s
 and a username of %s",
);

add_translation("en", $english);

The message body provides all the information that we need to track down this user
if there is any difficulty in the validation process. If you do not have e-mail configured
for your test server, then send this message to the log instead with elgg_log().

Exercise
To improve your understanding of events, you must figure out what event is
triggered when a user friends another user. Register a function for that event and
send out notifications to yourself.

Chapter 8

[181]

Lesson 5: Creating a custom widget
Elgg's widget system is demonstrated through this lesson.

Problem
You need to add some custom content to your users' profiles. This may be
information related to the purpose of the site (a site for sports fans could allow
members to display the schedule for their favorite team on their profiles). It could be
statistics about how many people have read their latest blog posts or looked through
their newest photos. You may want to add a special welcome to new members or
provide links to featured content.

Solution
Elgg has a widget framework that makes it easy to add content like that described
above to profiles and dashboards. All that is required to create a new widget is
adding two views and registering the widget. Elgg handles all of the details.

Example
In this example, we are adding a widget that welcomes new users and provides a list
of useful links. We allow the user to set the number of links that are displayed. The
widget looks like the following screenshot:

Customization through Plugins

[182]

Step 1: Create the plugin structure
Our welcome_widget plugin has a plugin manifest, start script, language file, and
two widget views.

We register the widget in the plugin's initialization function, as follows:

elgg_register_event_handler('init', 'system',
 'welcome_widget_init');

function welcome_widget_init() {
 $title = elgg_echo('welcome');
 $description = elgg_echo('welcome:widget:description');
 elgg_register_widget_type('welcome', $title, $description);
}

The first parameter in elgg_register_widget_type() is the identifier of
the widget. It tells Elgg where to find the views for this widget. As we used
"welcome" as the identifier, our widget's views are in views/default/widgets/
welcome/. The second parameter is the title and the third is the description used for
the tool tip on the add widget panel. There are also some optional parameters not
used here. You can look up the parameters for functions using the API reference at
http://reference.elgg.org/ or by checking the source code.

Step 2: Create the widget edit view
Our plugin lets the user set the number of displayed links so we add an edit view
(edit.php) with the following code:

<?php
/**
 * Widget edit code
 * User selects how many links to display in widget

http://reference.elgg.org/

Chapter 8

[183]

 */

// set default value
if (!isset($vars['entity']->num_links)) {
 $vars['entity']->num_links = 5;
}

// when Elgg handles the saving, names need to be params[<var
 name>]
$params = array(
 'name' => 'params[num_links]',
 'value' => $vars['entity']->num_links,
 'options' => array(1, 2, 3, 5),
);
$dropdown = elgg_view('input/dropdown', $params);

?>
<div>
 <?php echo elgg_echo('welcome:num_links'); ?>:
 <?php echo $dropdown; ?>
</div>

The output of this view is shown in the following screenshot:

Customization through Plugins

[184]

It creates a drop-down input control for selecting the number of displayed links.
Elgg handles saving the user input in the database for you. The only requirement is
that the name of the input fields must be params[<variable name>]. That is why
the name of the input field is 'params[num_links]' as the variable is accessed by
$vars['entity']->num_links. The access control shown on the widget below is
automatically added by Elgg for all profile widgets.

Step 3: Create the widget content view
The display view (content.php) gets the number of links from the widget object
($vars['entity']). It loops over the links and adds them to an unordered list.

<?php
/**
 * Widget display code
 */

$num_links = $vars['entity']->num_links;

// welcome text
echo elgg_echo('welcome:message');

// array of links
$links = array(
 'help',
 'activity',
 'members',
 'notifications/personal',
 'settings'
);

// display links in an unordered list
echo '<div class="elgg-output">';
echo '';
for ($index = 0; $index < $num_links; $index++) {
 $link = $links[$index];
 $text = elgg_echo("welcome:text:$link");

 // create anchor tag
 $anchor = elgg_view('output/url', array(
 'href' => $link,
 'text' => $text,
));
 echo "$anchor";
}
echo '';
echo '</div>';

Chapter 8

[185]

The links are pulled from the language file in a manner similar to how we selected
the random tip in the sidebar_tip plugin. Each link address is used as a part of the
language string descriptor for the text of the link.

<?php
/**
 * Language file for welcome widget
 */

$english = array(
 'welcome' => "Welcome",
 'welcome:widget:description' => "A welcome along with useful
 links",

 'welcome:num_links' => "Number of links",

 'welcome:message' => "Welcome to the only social networking site
 without any real people! Below are some links that will come in
 handy.",

 'welcome:text:help' => "Help",
 'welcome:text:activity' => "Activity",
 'welcome:text:members' => "Member List",
 'welcome:text:notifications/personal' => "Notification
 Settings",
 'welcome:text:settings' => "Account Settings",
);

add_translation("en", $english);

We did not define the entire link address so that this widget can be used on any site.
Instead, we submit the partial address (such as "settings") to the 'output/url'
view and Elgg handles creating the full address for us (such as http://example.
org/settings).

Customization through Plugins

[186]

Exercise
Many social media sites such as Flickr, Twitter, and Digg provide snippets of
JavaScript to use in widgets. Weather sites are another good source for widgets.
You can copy their JavaScript code and paste it into the content view of a widget.
If the site's JavaScript has a parameter, like zip code for weather widgets, then you
can add an edit view so that the user can specify the parameter and then insert it
into the JavaScript using a php function such as str_replace(). Here is an example
of a weather widget created using code from WeatherBug (http://weather.
weatherbug.com/desktop-weather/web-widgets.html):

Lesson 6: Giving your users options
Adding settings for users from a plugin is the topic of this lesson.

Problem
You want to give your users control over different aspects of the site. Maybe they
get to pick the background color of their profile page. Or how about letting them
select how comments are sorted on their blog posts – newest or oldest at the top.
You might also have a plugin that they need to configure before they can use it -
something like a plugin that pulls in their latest Flickr photos and imports them into
a photo gallery. How do you give users these types of settings?

http://weather.weatherbug.com/desktop-weather/web-widgets.html
http://weather.weatherbug.com/desktop-weather/web-widgets.html

Chapter 8

[187]

Solution
Just as plugins can have administrative settings, they can also have user settings.
These settings are adjusted on the Configure your tools page found in the user's
settings area. When a plugin has a view in a particular location (views/default/
plugins/<plugin_name>/usersettings.php), Elgg automatically adds a section to
this page.

Example
We are building a toolbar that sits to the right of the site name in the header. Users
control what items are shown in the toolbar through their tools settings pages,
as follows:

Step 1: Create the plugin structure
The user_defined_toolbar has the typical plugin manifest, start script, and
language file. In addition, it has three views: css, user settings, and the actual
toolbar view, as follows:

Customization through Plugins

[188]

In start.php, we extend both the main CSS view and the header view.

elgg_register_event_handler('init', 'system',
 'user_toolbar_init');

function user_toolbar_init() {
 // add our css
 elgg_extend_view('css/elgg', 'user_defined_toolbar/css');

 // add our toolbar to the header
 elgg_extend_view('page/elements/header',
 'user_defined_toolbar/toolbar');
}

Step 2: Add user settings
If Elgg finds a file at /views/default/plugins/<plugin name>/usersettings.
php, then it adds a section to the Configure your tools page. Open the user settings
view and add the following code:

<?php
/**
 * User settings edit code
 * user selects menu options from a list
 */

// get instructions text
$instructions = elgg_echo('udt:instruct');

// get previously saved settings
$guid = elgg_get_page_owner_guid();
$settings = elgg_get_all_plugin_user_settings($guid,
 'user_defined_toolbar');

// setup checkboxes for toolbar options
$checkboxes = '';
$tools = array('blog', 'settings', 'inbox', 'files');
foreach ($tools as $tool) {
 $label = elgg_echo("udt:$tool");
 $input = elgg_view('input/checkbox', array(
 'name' => "params[$tool]",
 'value' => 1,
 'checked' => (bool)$settings[$tool],
));
 $checkboxes .= "<label>$input$label</label>
";

Chapter 8

[189]

}

// output our user settings area
echo "<p>$instructions</p>";
echo "<div>$checkboxes</div>";

This view displays instructions on how to personalize the toolbar followed by
checkboxes for the various options. It retrieves the user's settings using elgg_get_
all_plugin_user_settings(), which returns the settings in an associative array.
We hard-code the toolbar choices and limit them to blog, files, settings, and the
messages inbox. The labels for the checkboxes come from the language file:

<?php
/**
 * User defined toolbar language strings
 */
$english = array(
 "udt:instruct" => "Select which items you would like in
 your toolbar.",

 "udt:blog" => "My blog",
 "udt:settings" => "Settings",
 "udt:inbox" => "Inbox",
 "udt:files" => "My files",
);

add_translation("en", $english);

The end result of the view is as shown in the following screenshot:

Just as with widgets settings, Elgg handles saving the options in the database as long
as we use names with "params[]".

Customization through Plugins

[190]

Step 3: Create the toolbar view
For the toolbar, we want to create a list of items that the user has selected. We
retrieve the user's settings as we did in the settings view using elgg_get_all_
plugin_user_settings(). We then loop through the settings to determine which
items have been activated. The toolbar.php file should look like the following code:

<?php
/**
 * User menu
 */

$user = elgg_get_logged_in_user_entity();

$items = array(
 'blog' => "blog/owner/$user->username",
 'settings' => "settings",
 'inbox' => "messages/inbox/$user->username",
 'files' => "files/owner/$user->username"
);

$settings = elgg_get_all_plugin_user_settings($user->guid,
 'user_defined_toolbar');

if ($settings) {

 echo '<ul id="udt-toolbar">';

 foreach ($items as $name => $url) {

 if ($settings[$name]) {
 $link = elgg_view('output/url', array(
 'text' => elgg_echo("udt:$name"),
 'href' => $url,
));
 echo "$link";
 }
 }

 echo '';
}

The output is an unordered list of links. We personalize the links to point to that
user's blogs, inbox, and files by asking for the logged in user from Elgg. The link
addresses are obtained by checking the URLs for the Mine tab on the blog and
files pages.

Chapter 8

[191]

Step 4: Add CSS
If you viewed the toolbar on your site right now, then you would see that it is not
usable because the text overlaps other page elements, as follows:

We need to add the CSS to position and style the toolbar. Open the css view and
insert the following code:

.elgg-page-header h1
{
 float: left;
}
.udt-toolbar
{
 position: absolute;
 top: 25px;
 right: 0;
}
.udt-toolbar li
{
 display: inline-block;
 margin-left: 10px;
}
.udt-toolbar li a
{
 display: block;
 font-size: 1.1em;
 font-weight: bold;
 color: #eeeeee;
 padding: 4px 10px;
 border-radius: 8px;
 -webkit-border-radius: 8px;
 -moz-border-radius: 8px;
 text-decoration: none;
}

Customization through Plugins

[192]

.udt-toolbar li a:hover
{
 color: #ffffff;
 background-color: #0054A7;
 text-decoration: none;
}

The first statement floats the site name text so that we can position our toolbar
to its right. After that, we position the list, make it horizontal, and style the links
to look like buttons when hovered over. The final product is as shown in the
following screenshot:

Exercise
A good learning exercise related to user settings is writing a plugin that allows users
to set the background color of their profile page. Because the primary CSS file is
cached, it is not possible to personalize that file. Instead, you could include the CSS
inline in the page like the following:

<style type="text/css">
 body {
 background-color: black;
 color: white;
 }
</style>

Instead of hard coding the CSS colors, use colors from the user settings. To reflect the
owner of a profile page rather than the person viewing the page, the owner's GUID
needs to be passed:

$guid = elgg_get_page_owner_guid();
$settings = elgg_get_all_plugin_user_settings
 ('profile_background', $guid);

You also need to make sure that the inline CSS is only included on profile pages. This
can be done with a test of the context, as follows:

if (elgg_in_context('profile')) {
 // do stuff here
}

Chapter 8

[193]

Lesson 7: Adding JavaScript
This lesson demonstrates using a jQuery plugin with Elgg.

Problem
You have been looking at pages that use really slick jQuery plugins. (Do a search on
"top jquery plugins" if you are not familiar with all the possibilities offered by
jQuery plugins.) Lightboxes, tool tips, charts, animations, fancy forms – the list goes
on and on. You want to add a few of these jQuery plugins to your Elgg site, but you
are not sure how to accomplish this.

Solution
Many jQuery plugins only require inclusion of a JavaScript file, often a CSS file, and
then a little bit of JavaScript to initialize the plugin. Elgg has functions for including
external JavaScript and CSS files that make this easy.

Example
In this example, we are adding a fancy tooltip to all the timestamps of content on the
site. Normally, when you mouse over a timestamp, you see a tooltip created by the
browser, like in the following screenshot:

We are using the jQuery Tools library (http://flowplayer.org/tools/tooltip/
index.html) to create tool tips that look like the following screenshot:

http://flowplayer.org/tools/tooltip/index.html
http://flowplayer.org/tools/tooltip/index.html

Customization through Plugins

[194]

Step 1: Create the plugin structure
Our tooltips plugin has a plugin manifest, a start script, a css view and a js view,
along with the files that make up the tooltips library. The tooltips library can be
downloaded here: http://flowplayer.org/tools/download/index.html and
the graphics are available here: http://flowplayer.org/tools/img/tooltip/
tooltip.zip. We put the JavaScript file and graphics in a vendor's directory to
keep it separate from the code that we are writing. The plugin structure looks like
the following:

Step 2: Load the JavaScript file
Because we want this jQuery plugin to run on every page, we register and load it in
our plugin's initialization function, as follows:

elgg_register_event_handler('init', 'system', 'tooltips_init');

function tooltips_init() {
 $url = 'mod/tooltips/vendors/jquery_tools/jquery.tools.min.js';
 elgg_register_js('jquery.tools', $url, 'footer');
 elgg_load_js('jquery.tools');
}

The elgg_register_js() function tells Elgg that there is a JavaScript file by the
name of "jquery.tools" at the specified URL. We also registered the JavaScript file
to be included in the footer of the page rather than in the HTML <head> element.
This is a community-accepted best practice for performance. After registering the file,
we immediately tell Elgg to load it, making it available on every page. With other
scripts, you may only want to load them on particular pages. In those cases, you
would call elgg_load_js() from the page handler or from a view that requires it.

http://flowplayer.org/tools/download/index.html
http://flowplayer.org/tools/img/tooltip/tooltip.zip
http://flowplayer.org/tools/img/tooltip/tooltip.zip

Chapter 8

[195]

Step 3: Add CSS and JavaScript initialization
There are two remaining items before we are done. We need to initialize the tooltips
JavaScript library and style the tooltips with CSS. We accomplish both by extending
core views in the initialization function, as follows:

elgg_register_event_handler('init', 'system', 'tooltips_init');

function tooltips_init() {
 $url = 'mod/tooltips/vendors/jquery_tools/jquery.tools.min.js';
 elgg_register_js('jquery.tools', $url, 'footer');
 elgg_load_js('jquery.tools');

 elgg_extend_view('js/elgg', 'tooltips/js');
 elgg_extend_view('css/elgg', 'tooltips/css');
}

We use the CSS and graphics provided from the jQuery Tools website. The css.php
file then looks like the following:

<?php
/**
 * Tooltips CSS
 */

$img = 'mod/tooltips/vendors/jquery_tools/
 graphics/black_arrow.png';
$img = elgg_normalize_url($img);
?>

.tooltip {
 display: none;
 background: transparent url(<?php echo $img; ?>);
 font-size: 12px;
 height: 70px;
 width: 160px;
 padding: 25px;
 color: #fff;
}

Instead of hard-coding the URL of the image, we calculate it from a relative URL
using the elgg_normalize_url() function. This function creates an absolute URL
using the base URL of the site. This ensures that the code works on any site the
plugin is installed on.

Customization through Plugins

[196]

We initialize the tooltips jQuery plugin by extending the primary Elgg JavaScript file
with the following code:

<?php
/**
 * Extend the main elgg.js script for tooltips initialization
 */
?>

elgg.provide('elgg.tooltips');

elgg.tooltips.init = function() {
 $("acronym[title]").tooltip();
}

elgg.register_hook_handler('init', 'system', elgg.tooltips.init);

The first line creates a JavaScript object for our plugin. We then define an
initialization function and register that function to run when Elgg's JavaScript
library performs its initialization. This should look familiar as Elgg's JavaScript
initialization approach is based on its PHP code. Lastly, we call the tooltip function
on all the acronym tags that have a title. This configures the tooltips JavaScript to run
whenever the mouse moves over one of the timestamps.

Exercise
There are many jQuery plugins out there and using them is as easy as follows:

1.	 Include the jQuery plugin's JavaScript, CSS, and any images that it uses.
2.	 Find, modify, or add HTML required for the plugin.
3.	 Add an initialization script.

A good starting point is adding a lightbox to the image gallery page. This would
enable users to view large versions of the images without leaving the page. Elgg is
distributed with the FancyBox jQuery library and its files can be loaded with the
following lines:

 elgg_load_js('lightbox');
 elgg_load_css('lightbox');

Chapter 8

[197]

Lesson 8: Changing how Elgg does X
This lesson covers using a plugin hook. It also explains how to add
administrative settings.

Problem
Groups can have blogs, but only the person who writes the blog post can edit it. You
prefer that group blogs work like the pages tool that allow for collaborative editing.
Or maybe you would like to create customized notification messages that are sent to
your users through e-mail. You also might want to include custom information when
people search your site. The common theme here is that Elgg is doing one thing and
you would like it to do it differently.

Solution
Use plugin hooks, which are very similar to events. When something occurs, a plugin
hook is triggered and the functions that are registered for that plugin hook are called.
The primary difference between events and plugin hooks is that plugin hook functions
can return a changed result to the core. Take the 'validate, input' plugin hook
as an illustrative example. When a user submits a new blog post, the text of the blog
post is sent through the 'validate, input' plugin hook. The htmlawed plugin scans
the text, checking if the user is trying to hack the site. If it finds suspect text, then it
removes the text. We could write an additional plugin for the 'validate, input' hook
that scans for obscene language and removes it or warns the user.

Example
There is a list of available plugin hooks on the Elgg wiki (http://docs.elgg.org/
List_of_Plugin_Hooks). One of the hooks listed is 'index, system' which is
triggered whenever a browser requests the front page. This hook lets plugins create a
custom front page for Elgg instead of the default one provided by the engine.

http://docs.elgg.org/List_of_Plugin_Hooks
http://docs.elgg.org/List_of_Plugin_Hooks

Customization through Plugins

[198]

We are going to use this plugin hook to create a Coming soon page. We have been
working hard, but our site is not ready for the public. We would really like to be
testing our code on our production server without anyone being able to see the site.
We also want to have a page up that lets people know the site is coming soon and
perhaps pique their interest. We want a page like the following screenshot:

Step 1: Create the plugin structure
The coming_soon plugin uses knowledge that we have gained through the
previous lessons. Besides the typical plugin manifest, start script, and language
file, this plugin has an administrative setting page, its own CSS file, a custom
layout, and a custom page shell. Add to that three more views and we have the
the following structure:

Chapter 8

[199]

Step 2: Create the index page
After creating all the files that this plugin needs, we add code to the start.php file
to register for the 'index, system' plugin hook.

elgg_register_event_handler('init', 'system', 'coming_soon_init');

function coming_soon_init() {
 elgg_register_plugin_hook_handler('index', 'system',
 'coming_soon_index', 1);
}

Notice that the last parameter is 1 for the elgg_register_plugin_hook_handler()
function. This sets the priority for the callback function ensuring that our plugin
gets the first opportunity to replace the front page. The function we registered uses
the custom layout and custom page shell to create the web page. It returns true to
indicate that the front page has been handled. If we do not return true, then the user
would see two front pages.

function coming_soon_index() {

 $body = elgg_view_layout('coming_soon');

 // use our own page shell
 echo elgg_view_page('', $body, 'coming_soon');

 return true;
}

Customization through Plugins

[200]

When we pass "coming_soon" as the layout name to elgg_view_layout(), Elgg
uses the view "page/layouts/coming_soon". In this view, we pull together three
views to create the page: an intro that has the site title, a countdown to when the site
launches, and a footer that tells the viewer about the people developing the site. The
view looks like the following:

<?php
/**
 * Layout of coming soon front page
 */

echo '<div id="coming-wrapper">';

echo elgg_view('coming_soon/intro');
echo elgg_view('coming_soon/countdown');
echo elgg_view('coming_soon/footer');

echo '</div>';

We are also using a custom page shell as we do not want Elgg to include the normal
header and footer on this page. The page shell contains the basic structure of the
HTML web page. The following code is what ours looks like:

<?php
/**
 * Coming soon pageshell
 */

// Set the content type
header("Content-type: text/html; charset=UTF-8");

$title = elgg_get_site_entity()->name;
$url = 'mod/coming_soon/css/coming_soon.css';
$url = elgg_normalize_url($url);

?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8" />
 <title><?php echo $title; ?></title>

Chapter 8

[201]

 <!-- include our custom css file -->
 <link rel="stylesheet" href="<?php echo $url; ?>"
 type="text/css" />
 </head>
 <body>
 <?php echo $vars['body']; ?>
 </body>
</html>

This is a bare bones page shell that sets the title of the page and includes our CSS file.
To look at Elgg's default page shell, open the file /views/default/page/default.
php. This is where Elgg includes most of its JavaScript and CSS. It also sets the
structure for the page with sections for the topbar, header, layout area, and footer.

Step 3: Define the views
Now that the structure for our index page is in place, we can fill in the content of the
three views that we are including in our layout. The three views are very simple. It is
not absolutely necessary to divide them in this manner, but it is a good habit to break
your HTML code into structural chunks. The intro view has the title and uses the
site's description as set on the Basic Settings page:

<?php
/**
 * Introduction view
 */

$site = elgg_get_site_entity();

$title = $site->name;
$tagline = $site->description;

echo "<h1>$title</h1>";
echo "<h3>$tagline</h3>";

The countdown view will automatically update by the time we are done with the
plugin, but for right now, we hard-code its value.

<?php
/**
 * Countdown view
 */

$countdown = elgg_echo('coming_soon:coming', array(27));

Customization through Plugins

[202]

?>

<div id="coming-countdown">

 <?php echo $countdown; ?>

</div>

The footer is similarly simple:

<?php
/**
 * Footer view
 */
?>

<h3>
 <?php echo elgg_echo('coming_soon:footer'); ?>
</h3>

We used two language strings so we add those to en.php:

'coming_soon:coming' => 'Coming in %s days',
'coming_soon:footer' => 'Be the first to join',

If we activate the plugin now without the needed CSS, the front page looks like the
following screenshot:

If you activated the plugin and are logged out of your site, then you can log back in
by going to http://example.org/login (except replace example.org with your
site address).

http://example.org/login
http://example.org/login

Chapter 8

[203]

Step 4: Add the CSS
We add our CSS to the css/coming_soon.css file that we included in the page shell,
as follows:

body {
 background-color: #808080;
 font-family: "Helvetica Neue", Arial, Helvetica, sans-serif;
}
h1 {
 color: white;
 text-shadow: black 0.05em 0.05em 0.15em;
 font-size: 6em;
 line-height: 2em;
}
h3 {
 color: #e1e3e1;
 text-shadow: 0px 1px 5px black;
 font-size: 1.5em;
}
#coming-wrapper {
 width: 640px;
 margin: 30px auto;
 text-align: center;
}
#coming-countdown {
 margin: 80px 0;
}
#coming-countdown span {
 color: white;
 background-color: #12443F;
 border: 1px solid black;
 padding: 30px;
 font-size: 1.5em;
 font-weight: bolder;
 text-shadow: 0px 1px 10px black;
 border-radius: 8px;
 -webkit-border-radius: 8px;
 -moz-border-radius: 8px;
 box-shadow: 2px 2px 8px black;
 -moz-box-shadow: 2px 2px 8px black;
 -webkit-box-shadow: 2px 2px 8px black;
}

Customization through Plugins

[204]

We use a few newer CSS elements such as text-shadow and border-radius. Versions
of Internet Explorer before IE9 ignore these elements, but modern browsers display
them. Our front page looks like what we want:

Step 5: Add a plugin setting
We do not want to edit the code each day to change the countdown value. Instead,
we set the launch date as a plugin setting and calculate how many days are left
with some PHP code. The view for our plugin setting is "plugins/coming_soon/
settings". It works exactly like the user settings view in that Elgg automatically
detects its existence and handles saving the data for us.

The plugin setting view uses a date picker for selecting the launch date:

 <?php
/**
 * Plugin settings
 */

// if user has not set date, show today on calendar
$release_date = time();
if (isset($vars['entity']->release_date)) {
 $release_date = $vars['entity']->release_date;
}

// add a date picker
$options = array(

Chapter 8

[205]

 'name' => 'params[release_date]',
 'value' => $release_date,
 'timestamp' => true,
);
echo elgg_view('input/date', $options);

The plugin entity is passed to the plugin settings view and is available as
$vars['entity'].

Elgg knows to initialize the data picker when the "input/date" view is used. If we
visit the Coming Soon settings page, the date picker looks like the following image:

Once the plugin settings view is finished, we head back to the countdown view to
calculate the number of days until launch:

<?php
/**
 * Countdown view
 */

$release_date = elgg_get_plugin_setting('release_date',
 'coming_soon');

// number of seconds until release
$diff = $release_date - time();

// round up to number of days
$day = 24 * 60 * 60;

Customization through Plugins

[206]

$num_days = ceil($diff/$day);

$countdown = elgg_echo('coming_soon:coming', array($num_days));
?>

<div id="coming-countdown">

 <?php echo $countdown; ?>

</div>

We requested that Elgg store the date as a Unix timestamp (the number of seconds
that has elapsed since January 1, 1970) by setting the timestamp parameter as true
for the 'input/date' view. We subtract the current time as a Unix timestamp to
calculate how many seconds to the launch of our site. That is not very useful to
potential users so we convert that into days. Now the passing of each day lowers the
countdown for our site launch.

Exercise
This example did not modify the data passed by the plugin hook to your function. To
try writing a plugin that does, we use the 'view, *' plugin hook. This hook sends
your function the output of a view. You can add, remove, or replace content from
the HTML of the view and then return it at the end of your function. One example is
registering for the 'view, output/longtext' view. This view is used for displaying
the body of a blog post or the content of a page. In your function, you could check for
certain keywords and wrap those words with links to pages on your site. If your site
was for geography students, then you could catch the names of countries and add
links related to that country:

$country = 'Andorra';
$link = "<a href=
 'http://wikipedia.org/wiki/$country'>$county";
$text = str_replace($country, $link, $text);

After you have made the appropriate replacements, return the new string and Elgg
will use it as the output of the view.

Chapter 8

[207]

Lesson 9: Collecting and storing data
This is the longest of the lessons. It demonstrates how to create forms, how to create
an action, and how to save the data using Elgg's data model.

Problem
You know how to store settings for plugins, widgets, and users, but how do you
collect and store more complicated data? You want your users to write testimonials
about your site that you can rotate on the front page. Or you would like to have a
custom feedback system that lets users report problems or offer suggestions. Maybe
you are thinking that it would be great if your users could post their favorite poems
or excerpts from books and then describe why they like them. The one common issue
with all of these is how to gather and store the data.

Solution
A form is used to collect data from users on websites. When a user registers on an
Elgg site, the user's name, e-mail address, and password are all entered into a form.
The form includes an address for the browser to send the data when the user clicks
on the submit button. This address is called the action. Elgg has an action system to
manage this process. Elgg also sends the user to a new page after submitting a form.
Let's take a look at creating forms and actions in this last lesson.

Example
In this example, we are creating a help system for our site. We want a categorized
page of help topics that makes it easy for users to find the information they are
looking for. Our help system will have an administrative interface for adding new
help content. This is where the forms and actions come in. Our administrator fills
in the information about new help topics and submits it. We want Elgg to save the
content and dynamically update the help pages.

Customization through Plugins

[208]

When we are all done, the main help page will look like the following screenshot:

Overview
This is the most extensive of the tutorials in this chapter. It introduces creating forms
and the actions to process a form's data. This plugin is the first to use Elgg's data
model. For a high-level overview of the data model, read Appendix A. The rest of the
plugin builds on what you learned in the previous chapter and this one.

Step 1: Create the plugin structure
The help plugin has more components than any other plugin that we have written.
Besides the plugin files we have seen in the past, this one also has a library file
to store common functions, action files, and three page files are put in a separate
directory to keep everything organized. When we are finished we will have 14 files
structured as follows:

Chapter 8

[209]

Step 2: Create the main help page
We are using a page handler for our pages with addresses like http://example.
org/help. We register the page handler in our plugin's initialization function, as
follows:

elgg_register_event_handler('init', 'system', 'help_init');

function help_init() {

 // page handler for the help system
 elgg_register_page_handler('help', 'help_page_handler');
}

We also create a skeleton page handler function, as follows:

function help_page_handler($page) {

 $pages_dir = elgg_get_plugins_path() . 'help/pages/help';

http://example.org/help
http://example.org/help

Customization through Plugins

[210]

 // send everything to main index
 require "$pages_dir/index.php";

 return true;
}

This loads our main index page when a user visits any page starting with /help/.
We keep our main index page very simple for now while we set everything else up.

<?php
/**
 * Main help index page – list help categories
 */

$title = elgg_echo('help:categories');

$content = "hello, world";

$body = elgg_view_layout('one_column', array('content' =>
 $content));

echo elgg_view_page($title, $body);

To give people access to this page, we add a link to the site menu in the plugin's
initialization function:

 // add menu item for help
 $item = new ElggMenuItem('help', elgg_echo('help'), 'help');
 elgg_register_menu_item('site', $item);

If we promote the Help menu item using the administrative Menu Items page of
Elgg, then our main help page looks like the following screenshot:

Chapter 8

[211]

Step 3: Create the categories
The help categories rarely change so we will hard-code them in our library file, help.
php. We are using the library file to demonstrate a possible method for organizing
code that becomes necessary as plugins become more complicated. We put the
categories in a function so that we can easily access them anywhere. Each category
has a code and a title. The titles are stored in the language file in case we need to
support more than one language. Put this function in lib/help.php, as follows:

function help_get_categories() {
 $codes = array(
 'getting_started',
 'blogging',
 'bookmarks',
 'thewire',
 'profile',
 'settings',
);
 $categories = array();
 foreach ($codes as $code) {
 $categories[$code] = elgg_echo("help:title:$code");
 }

 return $categories;
}

The corresponding language strings are as follows:

 'help:title:getting_started' => 'Getting started',
 'help:title:blogging' => 'Blogging',
 'help:title:bookmarks' => 'Bookmarks',
 'help:title:thewire' => 'The Wire',
 'help:title:profile' => 'Your profile',
 'help:title:settings' => 'Your settings',

We register the library with Elgg in the plugin initialization function and tell Elgg to
load it on every page:

 $lib = elgg_get_plugins_path() . 'help/lib/help.php';
 elgg_register_library('help', $lib);
 elgg_load_library('help');

If we had a very large library, then we could selectively load the library depending
on whether it was needed for better performance.

Customization through Plugins

[212]

Step 4: Add an administration page
The first step to adding the administrative page is adding to the page handler. We
want the admin page to be http://example.org/help/admin/ so 'admin' will
stored in $page[0]. We add a switch statement to direct the requests and an if
statement to catch the requests to http://example.org/help:

function help_page_handler($page) {

 $pages_dir = elgg_get_plugins_path() . 'help/pages/help';

 // this is a url like http://example.org/help
 if (count($page) == 0) {
 $page[0] = 'index';
 }

 switch ($page[0]) {
 // help/admin
 case 'admin':
 require "$pages_dir/admin.php";
 break;
 // index page or unknown requests
 case 'index':
 default:
 require "$pages_dir/index.php";
 break;
 }

 return true;
}

The code for the administrative page is as shown in the following code snippet:

<?php
/**
 * Create help topics page
 */

// only admins should see this page
admin_gatekeeper();

// context will be help so we need to set to admin
elgg_set_context('admin');

$title = elgg_echo('help:admin');

$content = elgg_view_title($title);

$content .= elgg_view_form('help/save');

// use special admin layout
$body = elgg_view_layout('admin', array('content' => $content));

echo elgg_view_page($title, $body, 'admin');

http://example.org/help/admin/
http://example.org/help

Chapter 8

[213]

The first line is to ensure that only site administrators can view the page. Anyone
else trying to look at the page ends up being sent to the front page of the site. As
this is an administrative page, we also set the context to be 'admin' and use the
administrative layout and page shell.

The content of the page is its title and the form for saving help topics. The function
elgg_view_form() knows to get the body of the form from the view "forms/help/
save". It also configures the form to submit its data to the "help/save" action which
we create in step 6.

Step 5: Create the form body
The form bodies that we have written so far have been very simple: the widget edit
form, the plugin settings form, and the plugin user settings form. This form has four
input fields and a submit button. The views for all of these controls start with "input"
and you can see what input views are available by looking in the core directory
views/default/input/.

Our form has input fields for the category, question, answer, and access level and
will look like the following screenshot when we are done:

Customization through Plugins

[214]

Add the following code to the "forms/help/save" view to create this form:

<?php
/**
 * help/save form body
 *
 */

$instructions = elgg_echo('help:admin:instruct');

$categories = help_get_categories();
$category_input = elgg_view('input/dropdown', array(
 'name' => 'category',
 'options_values' => $categories,
));

$question_input = elgg_view('input/text', array(
 'name' => 'question',
));

$answer_input = elgg_view('input/longtext', array(
 'name' => 'answer',
));

$access_input = elgg_view('input/access', array(
 'name' => 'access_id',
));

$button = elgg_view('input/submit', array(
 'value' => elgg_echo('save')
));

echo <<<HTML

<div>$instructions</div>
<div>
 <label>Category</label>

 $category_input
</div>

<div>
 <label>Question</label>

 $question_input

Chapter 8

[215]

</div>

<div>
 <label>Answer</label>
 $answer_input
</div>

<div>
 <label>Access</label>

 $access_input
</div>

<div class="elgg-foot">
 $button
</div>
HTML;
?>

The possible categories are retrieved using the help_get_categories() function
that we previously created. We use a drop-down control for them. The questions and
answers get textboxes with the answers getting the longer one because we expect
that they will have more text. The access control determines who can see the help
topic. If we wanted to edit one several times before making it public, then we could
set the access level to Private. We did not use language string for the labels, to make
the code easier to follow.

Clicking on the save button will result in an error message saying "The requested
action 'help/save' is not defined in the system." This is because we have
not registered the action with Elgg yet.

Step 6: Create the save action
We register the save action in the plugin's initialization function, as follows:

 $base = elgg_get_plugins_path() . 'help/actions/help';
 elgg_register_action("help/save", "$base/save.php", "admin");

This tells Elgg where to find the action and that only administrators can use it.

Customization through Plugins

[216]

In the action file, we get the values submitted in the form from Elgg using get_
input(). This function automatically filters the data through the htmlawed plugin
looking for possible hacking attacks. After we save the help topic to the database,
we register a status message for later display and forward the user back to the help
administration page.

<?php
/**
 * Save a help topic
 */

// get the form values
$category = get_input('category');
$question = get_input('question');
$answer = get_input('answer');
$access_id = get_input('access_id');

// save the question and queue status message
$result = help_save_topic($question, $answer, $category, $access_id);
if (!$result) {
 register_error(elgg_echo('help:error:no_save'));
} else {
 system_message(elgg_echo('help:status:save'));
}

forward(REFERER);

The function that saves the topic has not been created yet, but we want to put that
function in the help library. Open the library file and insert the following function:

function help_save_topic($question, $answer, $category,
 $access_id) {
 $help = new ElggObject();
 $help->subtype = 'help';
 $help->title = $question;
 $help->description = $answer;
 $help->access_id = $access_id;

 $help->category = $category;

 $guid = $help->save();
 if (!$guid) {
 return false;
 }

 return true;
}

Chapter 8

[217]

This function saves the help topic as an ElggObject. This class supports storing
subtype, title, description, and access_id. It also supports storing arbitrary
data which are called metadata. The key difference for plugin authors is that the save
method must be called for storing native attributes (such as title). The save method
does not need to be called for metadata as it is automatically saved as it is created and
updated. In this example, we could have moved the line that sets the category after
saving the help object. If you want to read more about how ElggObjects and the Elgg
data model work, then see Appendix A and the Elgg wiki (http://docs.elgg.org/).

If we submit the form now by clicking on the save button, then Elgg saves the
information in the database, but we have no way of viewing it yet.

Step 7: Create the help category page
In this step, we are creating a page that lists the topics for a particular category. The
address for one of those pages is http://example.org/help/category/<category
code>. To support this, we must add more code to the switch statement in the page
handler function, as follows:

function help_page_handler($page) {

 $pages_dir = elgg_get_plugins_path() . 'help/pages/help';

 if (count($page) == 0) {
 $page[0] = 'index';
 }

 switch ($page[0]) {
 // help/admin
 case 'admin':
 require "$pages_dir/admin.php";
 break;
 // help/category/<category>
 case 'category':
 set_input('category', $page[1]);
 require "$pages_dir/category.php";
 break;
 // index page or unknown requests
 case 'index':
 default:
 require "$pages_dir/index.php";
 break;
 }

 return true;
}

http://docs.elgg.org/
http://example.org/help/category/

Customization through Plugins

[218]

Notice how we use set_input() to set the parameter "category". We do this so
the script category.php can access the category being requested. In topic.php,
we write the code to grab the category and then list the topics for that category, as
shown in the following code snippet:

<?php
/**
 * List all topics (questions) in a category
 */

// category is passed from page handler
$category = get_input('category', 'getting_started');

$title = elgg_echo("help:title:$category");

elgg_push_breadcrumb(elgg_echo('help'), 'help');
elgg_push_breadcrumb($title);

// get the topics for this category
$options = array(
 'type' => 'object',
 'subtype' => 'help',
 'metadata_name' => 'category',
 'metadata_value' => $category,
 'limit' => 20,
 'full_view' => true,
 'list_class' => 'help-list',
);
$content = elgg_list_entities_from_metadata($options);

$params = array(
 'content' => $content,
 'title' => $title,
 'filter' => false,
);
$body = elgg_view_layout('content', $params);

echo elgg_view_page($title, $body);

Because we saved the category as metadata on our ElggObject, we retrieve the help
objects by requesting all help objects with metadata named 'category' and having
the value of $category. There are several other elgg_get_entities* functions
that make writing powerful plugins easy. Describing them is out of the scope of this
book, but you can find more information in the API reference or the Elgg wiki.

Chapter 8

[219]

If you have not saved a few help topics, then now is a great time to do that. When
you are done, type the address in your web browser to view one of the categories.
If you created topics for the settings category, then the address would be http://
example.org/help/category/settings. A category page should look like the
following screenshot:

Because we did not define a view for displaying a help topic, the elgg_list_
entities_from_metadata() function used a default view that only shows the title
and the time of creation.

Step 8: Create the help object view
Because we saved our help topic as an ElggObject with a subtype of "help", Elgg
looks for a 'object/help' view. Let's define that so we can have a useful category
listing page, as follows:

<?php
/**
 * Entity view for a help topic
 * Type: object Subtype: help
 */

$item = $vars['entity'];
$question = $item->title;
$answer = $item->description;

// full view

http://example.org/help/settings
http://example.org/help/settings

Customization through Plugins

[220]

if ($vars['full_view']) {

 $body = elgg_view('output/longtext', array(
 'value' => $answer,
 'class' => 'mtn',
));

 echo <<<HTML
<div class="help-item" id="$item->guid">
 <h2>$question</h2>
 $body
</div>
HTML;

}

If you check the parameters that we passed to elgg_list_entities_from_
metadata(), then you will see that we asked for the full view of the help topic. In the
preceding view code, we check if it is the full view being requested and then display
the object. The full view typically displays all the information about an object.
When you view a blog with its comments, that is a full view. When full view is not
requested, object views tend to display the title and an excerpt of the content.

Our page is much better and only needs some minor styling to be finished.

Chapter 8

[221]

Step 9: Add the help sidebar
We want to provide a quick listing of all the topics for a category in the sidebar. We
define a sidebar view and call that view in the category page. Modify category.php
to get the sidebar and pass it on to the content layout:

// create the sidebar
$vars = array('category' => $category);
$sidebar = elgg_view('help/sidebar', $vars);

$params = array(
 'content' => $content,
 'sidebar' => $sidebar,
 'title' => $title,
 'filter' => false,
);
$body = elgg_view_layout('content', $params);

The "help/sidebar" view uses an aside module to list the various topics for
that category:

<?php
/**
 * Sidebar for a category's topics
 *
 * @uses $vars['category']
 */

$category = $vars['category'];

$heading = elgg_echo('help:topics');

$options = array(
 'type' => 'object',
 'subtype' => 'help',
 'metadata_name' => 'category',
 'metadata_value' => $category,
 'limit' => 0,
 'full_view' => false,
 'list_class' => 'help-list',
);
$body = elgg_list_entities_from_metadata($options);

echo elgg_view_module('aside', $heading, $body);

Customization through Plugins

[222]

It also uses elgg_list_entities_from_metadata(), but turns off full view. We
need to go back to the "object/help" and add an else to the if statement:

if ($vars['full_view']) {
 // snipped out full view code
} else {
 // summary view is just a link
 $url = "help/topic/$item->category#$item->guid";
 echo elgg_view('output/url', array(
 'href' => $url,
 'text' => $question,
));
}

Step 10: Add CSS for the topic listing page
We extend the main CSS view in our plugin's initialization function, as follows:

 elgg_extend_view('css/elgg', 'help/css');

We also add some CSS to remove the lines between topics:

.help-list, .help-list > li {
 border: none;
}

Our category page looks much better, as shown in the following screenshot:

Chapter 8

[223]

Step 11: Finish the main help page
The last step in this example is adding a list of the different categories to the main
help page. First, we replace the content variable in the main page:

<?php
/**
 * List the help categories
 */

$title = elgg_echo('help:categories');

$content = elgg_view('help/categories');

$body = elgg_view_layout('one_column', array('content' =>
 $content));

echo elgg_view_page($title, $body);

Next, we define the "help/categories" view:

<?php
/**
 * List of all help categories
 */

$categories = help_get_categories();

// create unordered list that we mark-up with CSS
echo "<ul id='help-categories'>";
foreach ($categories as $code => $title) {
 $blurb = elgg_echo("help:blurb:$code");

 $url = "/help/category/$code";
 $url = elgg_normalize_url($url);

 $text = "<h4>$title</h4>$blurb";

 echo "$test";
}
echo "";

Customization through Plugins

[224]

The blurb text appears underneath each category title and explains what is in the
category. The blurbs are set in the language file:

 // category blurbs
 'help:blurb:getting_started' => 'General info, account,
 privacy',
 'help:blurb:blogging' => 'Writing, saving, previewing',
 'help:blurb:bookmarks' => 'Bookmarklet, sharing',
 'help:blurb:thewire' => 'Microblogging, mentions',
 'help:blurb:profile' => 'Avatar, profile fields, comment wall',
 'help:blurb:settings' => 'Display name, email, notifications',

Finally, we add some CSS for this page:

.help-categories li
{
 float: left;
 margin: 0 30px 30px 0;
}
.help-category
{
 float: left;
 display: block;
 width: 252px;
 padding: 20px;
 border: 1px solid #cccccc;
 background-color: #eeeeee;
}
.help-category:hover
{
 text-decoration: none;
 background: none;
}
.help-category span
{
 display: block;
 margin-top: 4px;
 color: #4690D6;
}

Chapter 8

[225]

This gives us the help index page that we wanted, as shown in the following screenshot:

Exercise
How about editing or deleting help topics? We have left that as an exercise for the
reader. But if you get stuck, it is included with the downloadable code. You could
also extend this plugin by combining it with the sidebar tips and the welcome
widget plugins.

If you want to continue to work with forms and actions, then you could use this
example as a pattern to create any type of plugin where the user gets to enter data,
and the data is stored and displayed. Try creating a testimonial plugin that allows
users to praise your site. After you have that written, integrate it with a custom
front page plugin or use one from the Elgg community site to display a random
testimonial on your front page.

Customization through Plugins

[226]

Summary
This chapter guided you through the development of nine different plugins. Each
plugin taught you one or two new concepts that you can use when customizing your
Elgg site. Whenever you need to add a plugin setting or create a form, you can return
to this chapter and use the examples as a template. As you write more plugins,
solving these types of problems will become easier for you. You will not need to look
up the names and parameters of functions or search for the right input view. Instead,
you can focus on writing really cool plugins.

If your goal is to write more elaborate plugins, then you will need to learn the Elgg
data model (entities, metadata, annotations, and relationships). We briefly touched
on entities (ElggObject is one) and metadata, but you will find a fuller explanation
of the data model in Appendix A. Other topics not covered in this chapter include
adding to the activity stream, sending notifications, using Ajax, and using the web
services API. Besides Appendix A, there is further information on the Elgg wiki and,
of course, the source code itself is a valuable reference.

Theming Elgg
In Elgg, a theme sets the visual design of your website: its layout, color scheme,
graphics, typography, and behavior. The first thing you notice when visiting a
website is its visual design. If it uses flashing text and rainbow colors, then you
assume the site is stuck in the 1990s. In fact, you may assume the site's content is
just as stale as its design and not give the site a second look. This is one reason why
using the right theme for your site is so important. People quickly judge websites
based on appearance.

A theme does more than make a pretty picture. It also creates the user interface of
your website. It draws the user's attention to the important information. It makes it
easy to navigate the site and perform common tasks. When people look at your site,
you want them thinking slick or clean. When they use your site, intuitive, efficient, or
fun should be the top descriptions.

This chapter teaches the basics of creating an Elgg theme. It is written for those who
have experience in HTML and CSS, but are new to Elgg. The chapter covers the
following topics:

•	 Views system
•	 CSS framework
•	 JavaScript framework
•	 Comparison between theming for WordPress and Elgg
•	 Example theme
•	 Mobile theme

Theming Elgg

[228]

What you need to know
Theming absolutely requires knowledge of HTML and CSS. If you do not have
experience writing HTML or CSS, then you should work through a book on HTML
and CSS. You can create an entire theme using just CSS. Creating more advanced
themes involves writing PHP and JavaScript (especially jQuery). Because a theme
is a plugin in Elgg, at a minimum, you will need to know how to set up a plugin's
structure, override views, and extend views. These concepts are reviewed in this
chapter, but Chapters 7 and 8 provide more detailed introductions to these topics.

Theming basics
This section contains reference material useful for understanding Elgg's
theming system.

Elgg's default theme
In the previous chapters, you have seen many screenshots of Elgg's default theme. It
is not a plugin that can be removed, but is built into Elgg. Theming is the process of
replacing elements of the default theme. In this section, we provide an overview of
the four main components of the theme: HTML, CSS, JavaScript, and graphics.

Chapter 9

[229]

HTML
Elgg uses semantic HTML (sometimes called Plain Old Semantic HTML or POSH).
With semantic HTML, the markup describes the meaning of the content rather than
the presentation of it. The following are a few characteristics of semantic HTML:

•	 Tables are used to describe tabular data, not for layouts
•	 Menus tend to be lists of links so a list element is used
•	 Paragraph tags are used to mark paragraphs, not for spacing purposes
•	 Semantic CSS classes (using a class of error instead of red)

A primary advantage of this approach is that it is more intuitive to create and easier
to maintain CSS when HTML describes meaning rather than presentation.

The top level of Elgg's HTML structure is called the page shell. The views that create
the page shells are located in /views/default/page/. The primary page shell for
Elgg is the view page/default and the page shell for the administration area is
page/admin. The page shell assembles the main elements of a page. The default page
shell includes the topbar, header, main content body, and footer. In addition, there is
a div for status messages. It is organized as displayed in the following image:

Theming Elgg

[230]

To increase the flexibility of the HTML for theming, the top-level elements consist of
an outer and inner div. Consider the header as in the following example:

<div class="elgg-page-header">
 <div class="elgg-inner">
 <?php echo elgg_view('page/elements/header', $vars); ?>
 </div>
</div>

Each of the top-level elements has a view in the directory /views/default/page/
elements/. In general, this directory contains views that are only used once on a
page. This includes views for the sidebar, comment area, and content title along with
the topbar, header, and footer. A theme may need to override one or more of these
page elements or the page shell to achieve the desired HTML structure.

The structure inside of the elgg-page-body div is controlled by a layout view. The
layout views are found in /views/default/page/layouts/ and include one, two,
and three column layouts. The most commonly used layout is the two column layout
called one_sidebar and its organization looks like the following image:

Besides page shells, layouts, and page elements, there are also page components.
They can appear multiple times on a page and their views are located in the directory
/views/default/page/components/. We talk about these more in the section on
Elgg's CSS framework.

Chapter 9

[231]

The following is a quick overview of other commonly encountered view directories
that contribute to a site's HTML:

•	 forms: the bodies of a site's core forms.
•	 input: input fields such as textboxes, drop downs (selects), checkboxes, and

buttons.
•	 navigation: breadcrumbs, menus, tabs, and pagination.
•	 object: display content such as blogs, bookmarks, and files. Mostly in

plugins.
•	 output: convenient ways of displaying what was collected from input views.
•	 river: activity stream views.

For a more complete description of Elgg's views with hints on using and theming
them, see Appendix B, which is a views catalog. The Theming Sandbox under the
Developers section of the administration area is another good resource for learning
about the HTML structure and views of Elgg.

CSS
Elgg's CSS is created using the views system. The core views are located in /views/
default/css/. The primary CSS view is css/elgg. It includes the individual theme
modules from the elements directory:

•	 buttons: submit, delete, cancel, and action buttons
•	 components: lists, gallery, image blocks, tables, tags, and river
•	 core: clearfix and other special classes
•	 forms: forms and input fields
•	 grid: fluid grid
•	 helpers: utility classes to control spacing, separators, and orientation
•	 icons: icon sprites
•	 layout: page shell and layout classes
•	 misc: CSS that does not fit anywhere else
•	 modules: modules (sidebar boxes, pop-ups) and widgets
•	 navigational: breadcrumbs, menus, pagination, tabs
•	 reset: CSS reset
•	 typography: fonts, headings

Theming Elgg

[232]

There are two important features supported because Elgg uses its views system
to create the CSS file: plugins add their CSS by extending the main CSS view and
PHP can be used in the CSS. Plugins do not need to include their own CSS file or
use inline CSS. Instead, they extend the css/elgg view and each time the CSS file is
generated, their style information is included. The use of PHP is not very common in
Elgg's CSS views, but it is possible to create a color scheme that is controlled through
PHP variables. This is especially useful to themers who produce several color
schemes of the same theme.

Elgg's CSS is namespaced to prevent conflicts with external CSS files. It also contains
PHP comments to explain tricky or non-obvious rules, as follows:

<?php // force vertical scroll bar ?>
html, body {
 height: 100%;
 margin-bottom: 1px;
}

JavaScript
Like CSS, Elgg's JavaScript is generated with the views system. The primary
JavaScript view is js/elgg. As with CSS, plugins can extend this view to include
additional JavaScript. If a plugin requires a lot of JavaScript or only needs it on
certain pages, then it may register a separate JavaScript view with the Elgg engine.

Elgg's JavaScript is modular and the core libraries and classes are in the /js/
directory. The code is namespaced and encourages plugins to create their own
namespaces under the elgg space though the elgg.provide() function, as follows:

elgg.provide('elgg.thewire');

elgg.thewire.init = function() {
 $(".thewire-previous").live('click', elgg.thewire.viewPrevious);
 ...
}

/**
 * Display the previous wire post
 */
elgg.thewire.viewPrevious = function(event) {
 ...
}

elgg.register_hook_handler('init', 'system', elgg.thewire.init);

Chapter 9

[233]

If you have read Chapters 7 and 8, then elgg.register_hook_handler should
look familiar. Elgg's JavaScript framework provides a parallel hook system to the
PHP plugin hook system. It enables the engine and plugins to register, trigger, and
respond to events that are specific to Elgg.

Besides js/elgg, Elgg has two other JavaScript views included on every page. The
js/initialize_elgg view is included in the HTML head element and includes
variables that change from page to page. This is kept separate so that js/elgg is
cacheable. There is also a language JavaScript view js/languages that supports
internationalization of dynamic content through elgg.echo():

var confirmText = elgg.echo('question:areyousure');

Graphics
Elgg's graphics are located in /_graphics/. The images of primary interest to
themers are the avatar icons in /_graphics/icons/user/ and the icon sprites
(elgg_sprites.png). There is also an Ajax loading animation available by using the
view graphics/ajax_loader.

Views system
It is vitally important to understand Elgg's view system when theming. Chapters 7
and 8 covered views in their tutorials. Here is a condensed review of views in Elgg
that can serve as a quick reference.

What is a view?
A view produces a chunk of HTML code (can also produce CSS, JavaScript, XML,
and so on). Views are the building blocks of a web page in Elgg. The topbar, sidebar,
and footer are all examples of views. Displaying a view works as shown in the
following line of code:

echo elgg_view('page/elements/footer');

This returns a string that contains the HTML for the footer.

Views can contain other views. For example, the header view includes the header
logo view.

The output of a view changes based on the variables passed to it, as follows:

echo elgg_view('input/text', array('name' => 'email'));

The output also varies based on other factors such as who the viewer is. For example,
the owner of a blog post sees edit and delete links while a visitor does not.

Theming Elgg

[234]

Extending a view
Using elgg_extend_view(), content can be added to the output of a view. The
additional content is the output of another view. In this example, the output of the
myplugin/footer view is appended to the output of page/elements/footer:

elgg_extend_view('page/elements/footer', 'myplugin/footer');

This content can be inserted before the original output or appended after it. See
Lesson 3 in Chapter 8 for a detailed example of extending a view.

Overriding a view
Plugins can completely replace the output of a view by overriding it. Views get their
names based on their location in the directory structure. The page/elements/footer
view is located at /views/default/page/elements/footer.php. When a plugin
has a view in the same location as the core view, Elgg will use the plugin's view.
Plugin order matters if more than one plugin overrides a view. The last plugin to
load takes precedence. This is why it is recommended that a theme plugin be loaded
last. For a detailed example of overriding a view, see Lesson 2 in Chapter 8.

Template language
All the major open source web applications have a template system. Templates help
to separate the display and layout code from the program logic. They also encourage
code reuse. A template consists of tags that are replaced with content by the template
engine when a web page is requested.

In Elgg, the view system handles the template processing with PHP as the template
language. Elgg creates a page by combining the output of different views (templates):

<?php if (elgg_is_logged_in()) { ?>
<div class="elgg-page-topbar">
 <div class="elgg-inner">
 <?php echo elgg_view('page/elements/topbar', $vars); ?>
 </div>
</div>
<?php } ?>

Whenever you see a call to elgg_view(), think of it as a template tag with
parameters. In this example, we are testing whether the viewer is logged in and if so
including the template for the topbar.

Chapter 9

[235]

Caching
Dynamically creating the output of the views takes time, which is why Elgg caches
the output of some of the CSS and JavaScript views. Elgg creates a new version of
a cached view whenever a plugin is enabled or disabled or when plugin order is
changed. When editing a theme, this caching must be turned off. This can be done on
the Developer Settings page provided by the developer's plugin.

Scanning all the plugins to check for view overrides takes time. Elgg does this every
time a page is requested. For better performance, Elgg caches this information. This
file view caching should be turned off while doing development.

The viewtype
When you view a blog post in Elgg using your web browser, Elgg creates a web page
using HTML. This is done using the default viewtype. If you subscribe to the RSS
comment feed for the same post, then Elgg uses the rss viewtype. In both of those
instances the processing and database queries are the same, but Elgg creates different
output based on the viewtype. Later, we use a mobile viewtype to send web pages
formatted for mobile devices in one of our examples.

Tools
One challenge for themers is finding the view that created the HTML that you
want to change. The Developer Settings in the administration area have an option
for wrapping views in comments. It is then easy to find the view by using a web
developer tool such as Firebug:

Theming Elgg

[236]

CSS framework
Elgg includes its own CSS framework tailored for social applications. We have
already described its modularity. It was also designed to provide reusable CSS
classes for plugin authors and reduce the amount of CSS that a themer needs to learn
and modify. Some of the principles were borrowed from Nicole Sullivan's OOCSS
framework (https://github.com/stubbornella/oocss).

Creating abstractions of common visual patterns
There are visual patterns that are seen throughout an Elgg site (and social websites
in general). To avoid duplication and encourage reuse of CSS, these patterns have
been codified in Elgg's CSS framework as objects. An object consists of HTML and
associated CSS that work together to create a building block. An example of one of
these objects is the image block, as follows:

This pattern of image on left and text on the right is used throughout the Web from
Amazon to eBay, from Facebook to Twitter. An example from Elgg is a comment, as
shown in the following screenshot:

If a pattern is not identified and codified, then there will be many implementations
of it in a site's CSS. As an example, in Elgg 1.7 a sidebar box was reimplemented in
different ways by several of the plugins distributed with Elgg.

A best practice for working with CSS objects is to use descendant selectors inside
the object, but not across containers and objects. Here is an example of styling across
components as this statement affects image blocks that are within a list:

.elgg-list-bad > .elgg-image-block {
 background: red;
}

https://github.com/stubbornella/oocss
https://github.com/stubbornella/oocss

Chapter 9

[237]

Styling across object boundaries creates dependencies between an object and its
container, making the object less predictable. It also increases the possibility of
specificity wars.

Customizing objects through extension classes
The CSS objects have a base class that defines what is common across all instances of
the object (usually structure). The chrome is added through extension classes. This
enables a themer to add a single class to an object to change its overall look. As an
example, consider the module object. It consists of a header and body (and optional
footer). The HTML for the object looks like the following code snippet:

<div class="elgg-module">
 <div class="elgg-head">
 <h3>Title</h3>
 </div>
 <div class="elgg-body">
 content here
 </div>
</div>

Adding the class elgg-module-featured to the top-level div results in a module
that looks like the following screenshot:

If we added the class elgg-module-popup instead, then we would see the
following screenshot:

Theming Elgg

[238]

The presentation of the module is controlled by the extension classes. This leads to
simpler HTML markup and easy reuse and theming of the objects. This technique is
used throughout Elgg's CSS framework.

Adding external JavaScript and CSS
Elgg provides functions for managing JavaScript and CSS resources. A plugin
registers a JavaScript resource with the Elgg engine like the following code snippet:

$js_url = 'mod/pages/vendors/jquery-
 treeview/jquery.treeview.min.js';
elgg_register_js('jquery-treeview', $js_url);

This tells the engine the resource exists and gives it an identifier. Any plugin can ask
the engine to load the resource on a page with the elgg_load_js() function:

elgg_load_js('jquery-treeview');

There are parallel functions for css: elgg_register_css() and elgg_load_css().

If the JavaScript or CSS is being dynamically generated with the views system, then
Elgg has a convenience function for determining the URL of the cached view:

elgg_register_simplecache_view('js/lightbox');
$lightbox_js_url = elgg_get_simplecache_url('js', 'lightbox');
elgg_register_js('lightbox', $lightbox_js_url);

In the preceding code snippet, we register the js/lightbox view as cacheable and
then register it as a JavaScript resource. Not shown is an optional parameter to
specify whether the JavaScript is included in the HTML head element or the footer.

Menu system
Elgg has a unified API for creating, managing, and rendering menus. There are 12
unique menus defined by the Elgg engine and up to 10 of them can appear on a
single web page. Modifying the menus is a common activity when building a theme.

Chapter 9

[239]

Registering a menu item
There are two methods for adding an item to a menu. The first is the elgg_
register_menu_item() function. Chapter 7 provides a demonstration of adding
items to the site menu and the page menu. The chapter also explains how to use
either an ElggMenuItem object or an array of parameters with the registration
function. In the following example code, a link is added to the sidebar menu
whenever we are serving a blog or bookmarks page:

elgg_register_menu_item('page', array(
 'name' => 'world',
 'text' => 'Hello world',
 'href' => 'hello/world',
 'contexts' => array('blog', 'bookmarks'),
));

The function can be used to create nested menus by passing the name of an item's
parent when registering it. This and other parameters are documented in the
navigation library found at /engine/lib/navigation.php.

The second method adds an item to a menu just before it is rendered. This is used
mostly for context-sensitive menus such as a user's hover menu. With this menu,
the links depend on the user and so cannot be registered during Elgg's initialization
process. Instead, a plugin hook is triggered when a menu has been requested. The
plugin hook parameters include the information required to create the link. The
following function is from the messages plugin and adds a Send a message link to a
user's hover menu:

function messages_user_hover_menu($hook, $type, $return, $params) {
 $user = $params['entity'];

 if (elgg_get_logged_in_user_guid() != $user->guid) {
 $url = "messages/compose?send_to={$user->guid}";
 $item = new ElggMenuItem('send',
 elgg_echo('messages:sendmessage'), $url);
 $item->setSection('action');
 $return[] = $item;
 }

 return $return;
}

For more information on plugin hooks, review Lesson 8 in Chapter 8.

Theming Elgg

[240]

Rendering a menu
A menu is rendered using Elgg's view system by calling elgg_view_menu(). This
function accepts the name of the menu and an optional array of parameters such as
a sorting technique or an additional CSS class for the menu. The elgg_view_menu()
function uses views located in /views/default/navigation/menu/. It selects the
view based on the name of the menu. The site menu uses the navigation/menu/
site view and the page menu navigation/menu/page. If there is no view specifically
defined for a menu, then elgg_view_menu() will use navigation/menu/default.

The menu views create unordered lists to hold the menu items. A CSS class is added
to the unordered list based on the name of the menu (for example, elgg-menu-site
for a site menu). The views also handle menu sections, nested menus, and selected
menu items. The Theme Sandbox page has examples of the menus' HTML structure
and CSS classes.

Comparing theming in WordPress to Elgg
As WordPress is such a popular web application, many people are familiar with
creating or editing WordPress themes. For this reason, a comparison between the
themes in WordPress and Elgg is useful. If you have not worked with theming in
WordPress, then you can skip this section without missing anything.

We have already described how themes in Elgg override parts of the default theme.
WordPress is different in that you disable the default theme and activate a new
one. WordPress and Elgg both use the same template language – that being PHP
itself. They obviously have a different set of template functions (get_header() for
WordPress versus elgg_view ('page/elements/header') for Elgg).

A major difference between the two is that with WordPress each type of page has
a separate template. There are template files for the main index, archives, a single
blog post, and the search page. Each of those template files lays out the HTML code
by including templates for the header, footer, sidebar, plus other template tags to
include the blog post text and comments. With Elgg, there is a common page shell
that lays out the topbar, header, and footer. Most pages in Elgg only control the
content in the center of the page.

Another difference is the flexibility gained through using a plugin to create a theme. If
you want to imitate Google by using a different header graphic on special occasions,
then you do not need to edit your theme plugin. Instead, you can create another plugin
that only sets the header. To build on that example, suppose you are a web developer
with several clients using Elgg. You could build a base theme that is the same for all
of them and provide a secondary theme plugin that includes the customizations for a
specific client. This makes development and maintenance of these client sites easier.

Chapter 9

[241]

Building a theme
We are going to build a theme that puts into practice much of what you learned in
the Theming Basics section. This tutorial demonstrates how to override Elgg's primary
CSS view, how to extend and override views to change the HTML structure of pages,
and how to interact with the menu system. We do not cover overriding or adding
to Elgg's JavaScript libraries. If this is required for your theme, then read Lesson 7 in
Chapter 8 for an introduction to adding JavaScript libraries or visit the Elgg wiki.

Theming Elgg

[242]

The tutorial is divided into five sections, as follows:

1.	 Plugin structure. This covers creating a theme skeleton and provides an
overview of working with the primary CSS view.

2.	 Layout. We demonstrate working with the default page shell HTML to create
the layout of the site.

3.	 Moving the search box. This section describes how extending views can be
used to change the default structure of a page.

4.	 Sidebar box styling. Theming one of the CSS objects is the focus of this part.
5.	 Moving the site menu. The menu system is used to move the site menu from

the page header into the topbar as a drop-down menu.

The theme used in the screenshot includes a few other modifications including
styling buttons, tabs, lists, and fonts. They are left out of the tutorial as they require
only basic CSS skills and little-to-no particular knowledge of Elgg.

Plugin structure
As a theme is a plugin, it requires a manifest file and a start script. The manifest
can be copied from another plugin and modified to describe the theme plugin.
The manifest ought to state the plugin's category as theme so that it works with the
category filter on the Plugins page. The start script can be empty for many themes if
the theme does not interact with the menu system or extend any views. We start with
an empty start.php file and add to it when moving the search box.

To support modifications of wording on the site, we include a languages directory
and add an English language file. We are only defining a single language string in
the tutorial, but you can read Lesson 1 of Chapter 8 for a more detailed example of
using language files.

A theme should override Elgg's main CSS view css/elgg. This requires putting an
elgg.php file in the plugin's /views/default/css/ directory. We have two options
on how to proceed with overriding the css/elgg:

1.	 Create a blank view.
2.	 Copy over Elgg's view into our theme.

The advantage of the first option is that the theme is more likely to look different
from other Elgg themes. Themes that start with the default theme often do not have
a unique look and feel that set them apart from other Elgg sites. The advantage of
copying the original CSS view is that it requires less work because we do not have
to theme every single element. In this tutorial, we are copying the original CSS view
into ours.

Chapter 9

[243]

Another choice is whether to follow Elgg's modular CSS structure or place all of the
CSS in the css/elgg view. This is a matter of personal preference and in this tutorial
we use the modular structure. We override seven of the elements views in our
theme. If we were replacing the icon set, then we would also override the icons view
to define our own sprite.

The final structure is shown in the following image. We describe the addition of the
views in the navigation, page, and search directories in their respective sections.

Before continuing to the next section, copy the contents of the original Elgg CSS
views into the ones that we have created in this theme plugin.

Theming Elgg

[244]

Layout
The layout of the page is set in the aptly-named layout elements view. It has six
sections. We are modifying four of them as we are not changing the system messages
and topbar.

Default layout
The default layout CSS sets the background of the web page. We want a medium
blue background for the page and a black background for the footer, which gives us:

body {
 background: #000;
}
.elgg-page {
 background: #6b9bc1;
}

Page header
We selected 800-pixel widget for the content of the site. We apply a relative position
rule on elgg-page-header so that plugins can absolutely position content within
the header.

.elgg-page-header {
 width: 800px;
 margin: 0 auto;
 position: relative;
 height: 100px;
}

Page body layout
The content area has a white background and rounded corners. The rounded corners
will not work with versions of Internet Explorer before IE9. We only set a width on
the sidebar because the elgg-body class creates a spacing filling div.

.elgg-page-body {
 width: 800px;
 margin: 0 auto;
 background-color: white;
 border: 1px solid #666;
 border-radius: 8px;

Chapter 9

[245]

 -moz-border-radius: 8px;
 -webkit-border-radius: 8px;
}
.elgg-page-body > .elgg-inner {
 margin: 15px;
}
.elgg-layout {
 min-height: 360px;
}
.elgg-sidebar {
 position: relative;
 float: left;
 width: 210px;
 margin-right: 20px;
}
.elgg-main {
 position: relative;
}
.elgg-main > .elgg-head {
 margin-bottom: 15px;
}

Page footer
We want the footer to horizontally fill the bottom of the screen yet restrict its content
to the central portion of the layout. The inner div allows us to do that.

.elgg-page-footer {
 margin-top: 20px;
 padding-top: 15px;
 background: #000;
}
.elgg-page-footer > .elgg-inner {
 position: relative;
 width: 800px;
 margin: 0 auto;
}
.elgg-page-footer a:hover {
 color: #ccc;
}

Theming Elgg

[246]

The following screenshot shows how the site appears after these changes:

Moving the search box
Our next objective is to move the search box from the page header to the sidebar.
This requires adding an initialization function to our plugin's start script:

elgg_register_event_handler('init', 'system', 'mytheme_init');

function mytheme_init() {
 // search box in sidebar
 elgg_unextend_view('page/elements/header', 'search/header');
 elgg_extend_view('page/elements/sidebar', 'search/search_box',
 100);
}

Chapter 9

[247]

Originally, the search header extended the page header view so we unregister it.
Then, we extend the sidebar with the search box and set the priority at 100. Using
a priority less than 500 causes the search box to be prepended to the sidebar rather
than appended.

We also need to theme the search box. The original theming was in the search plugin
in the search/css view. Because of Elgg's CSS framework, well written plugins
should have very little CSS. The search plugin is an exception to this because it styles
the search box and sets colors for highlighting search terms.

We copy the original CSS in our plugin's search/css view and replace the search
box CSS with the following:

.elgg-sidebar .elgg-search {
 margin-bottom: 15px;
}

.elgg-sidebar .elgg-search input[type=submit] {
 display: none;
}
.elgg-search input[type=text] {
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;

 border: 1px solid #ddd;
 color: #999;
 font-size: 12px;
 font-weight: bold;
 padding: 2px 4px 2px 26px;
 background: transparent url(<?php echo elgg_get_site_url(); ?>_
graphics/elgg_sprites.png) no-repeat 2px -934px;
}

This CSS makes a few adjustments to its position and colors.

Styling the sidebar module
As an example of using a CSS extension class, we style the elgg-module-aside class
that is commonly used in the sidebar. Find this class in the modules elements view
and replace its rules with the following:

.elgg-module-aside > .elgg-head {
 background: #7eb7e4;
 padding: 5px;

Theming Elgg

[248]

}
.elgg-module-aside > .elgg-head * {
 color: white;
}
.elgg-module-aside > .elgg-body {
 border: 1px solid #ddd;
 border-top: 0;
 padding: 5px;
}

The module now looks like the following screenshot:

Moving the site menu to the topbar
To unify site navigation, we move the site menu into the topbar as a drop-down
menu. We do this by registering the site menu as an item in the topbar menu.
The best method to add the site menu to the topbar is using the 'register',
'menu:topbar' plugin hook. This allows plugins as much time as possible to
register their items for the site menu. This is done in the plugin's start script like the
following code snippet:

elgg_register_event_handler('init', 'system', 'mytheme_init');

function mytheme_init() {
 // tools menu
 elgg_unregister_plugin_hook_handler('prepare', 'menu:site',
 'elgg_site_menu_setup');
 elgg_register_plugin_hook_handler('register', 'menu:topbar',
 'mytheme_menu_setup');

Chapter 9

[249]

 // search box in sidebar
 elgg_unextend_view('page/elements/header', 'search/header');
 elgg_extend_view('page/elements/sidebar', 'search/search_box', 100);
}

function mytheme_menu_setup($hook, $type, $values) {
 $site_menu = elgg_view_menu('site');

 $item = new ElggMenuItem('tools', $site_menu, false);
 // the tools menu item should be last in default section
 $item->setPriority(1000);
 $values[] = $item;

 return $values;
}

In addition to registering for the menu register plugin hook, we also unregistered a
handler for a menu prepare hook. The Elgg engine provides this function to handle
custom ordering and creating the more section of the default site menu.

The site menu is now a part of the topbar menu, but it is also being included in the
header. To remove it, we need to override the page header view. To do this, we
create the view page/elements/header in our plugin, copy the original contents
into our view, and remove the call to elgg_view_menu().

We are calling the menu item Tools as it has a list of the major tools of the site. To add
text for our menu item to the topbar and control the HTML of the drop-down menu,
we override the navigation/menu/site view. Our new code will be as follows:

<?php
/**
 * Turn site menu into drop down menu
 */

$label = elgg_echo('mytheme:tools');
echo "<a>$label";

echo '<ul class="elgg-menu elgg-menu-tools">';
foreach ($vars['menu']['default'] as $menu_item) {
 echo elgg_view('navigation/menu/elements/item', array('item' =>
 $menu_item));
}

echo '';

Theming Elgg

[250]

This creates an unordered list with an extension class of elgg-menu-tools for
theming purposes. The label is added first to provide an element to trigger the drop-
down menu. We define the string in the language file:

<?php

$english = array(
 'mytheme:tools' => 'Tools',
);

add_translation('en', $english);

The final step is adding the CSS to create the drop-down menu. The unordered list
is hidden until a user mouses over the Tools topbar list element to reveal it. We
complete the drop-down menu by styling its links and giving them a hover effect.

.elgg-menu-tools {
 z-index: 10;
 display: none;
 position: absolute;
 padding-top: 4px;
 width: 150px;

 -webkit-box-shadow: 1px 1px 1px rgba(0, 0, 0, 0.25);
 -moz-box-shadow: 2px 2px 2px rgba(0, 0, 0, 0.5);
 box-shadow: 1px 1px 1px rgba(0, 0, 0, 0.25);
 opacity: 0.95;
}

li:hover > .elgg-menu-tools {
 display: block;
}
.elgg-menu-tools a {
 background-color: #333;
 color: #eee;
 border-bottom: 1px solid #000;
 font-weight: bold;
 height: 22px;
 padding-bottom: 0;
 padding-left: 6px;
 padding-top: 4px;
}
.elgg-menu-tools a:hover {
 text-decoration: none;
 color: #4690D6;
 background-color: #2a2a2a;
}

Chapter 9

[251]

The end result looks like the following screenshot:

This leaves the typography, form elements, buttons, and the other menus to be
updated by you for this theme. The available code for this tutorial has one possible
implementation of this design, but doing it yourself is a good exercise to learn more
about theming Elgg. The code can be downloaded at http://www.packtpub.com/
elgg-18-social-networking/book.

Creating a mobile theme
We close the chapter with a short guide to creating a mobile theme. Elgg's view
system makes it easy to create a theme for mobile devices. A mobile theme creates
another viewtype that is used whenever a mobile browser is detected. In Chapter
7, we discussed how Elgg uses a default viewtype to serve web pages to a browser
and an rss viewtype to serve RSS feeds to a feed aggregator. The logic and data are
the same for different viewtypes, but the rendered output is different. For a mobile
theme, we create a mobile viewtype and switch to this viewtype whenever a mobile
browser is detected.

Theming Elgg

[252]

Plugin structure
Our mobile theme is structured like the preceding theme except that instead of
putting the views in views/default/, they are added to views/mobile/, as follows:

In the start script, we detect mobile browsers by analyzing the user agent of the
request. There are toolkits available to do this for you such as WURFL (http://
wurfl.sourceforge.net/nphp/) and http://detectmobilebrowser.com/. We
leave it up to you to select one, or code the plugin to always serve the mobile theme.
The code in the start script looks like the following code snippet:

<?php
/**
 * Mobile theme
 *
 * An example of detecting mobile browsers and changing the viewtype
 */

elgg_register_event_handler('init', 'system', 'mobile_theme_init');

function mobile_theme_init() {
 elgg_register_viewtype_fallback('mobile');

 mobile_theme_set_viewtype();

 // do not want the more menu
 elgg_unregister_plugin_hook_handler('prepare', 'menu:site', 'elgg_
site_menu_setup');
}

http://wurfl.sourceforge.net/nphp/
http://wurfl.sourceforge.net/nphp/
http://detectmobilebrowser.com/

Chapter 9

[253]

function mobile_theme_set_viewtype() {

 $user_agent = $_SERVER['HTTP_USER_AGENT'];

 // your code here
 elgg_set_viewtype('mobile');
}

In the initialization function, we register our mobile viewtype as one that falls back
to default. Doing this causes Elgg to use a view from the default viewtype if one
does not exist in the mobile viewtype. That way we do not need to create a mobile
view for every single default view, but only for the ones that need to be structured
differently for mobile browsers.

The mobile_theme_set_viewtype() function checks the mobile devices based
on the user agent string sent by the browser. If it detects a mobile device, then it
switches Elgg into the mobile viewtype. Of course, in the preceding code it is always
set to the mobile viewtype.

Layout
The only change we are making to the layout is removing the sidebar. We do this by
adding a page/layouts/one_sidebar view in the mobile viewtype. After we copy
the code from the original view and remove the section for the sidebar, we now have
a single column site.

CSS
It is best that a mobile theme have a fluid layout to accommodate smaller screen
resolutions. We convert the default theme to a fluid theme by overriding the layout
CSS view. This is accomplished by removing the fixed widths on divs. When we are
done, the layout CSS is pared down to the following:

/***** TOPBAR ******/
.elgg-page-topbar {
 background: #333333 url(<?php echo elgg_get_site_url(); ?>_graphics/
toptoolbar_background.gif) repeat-x top left;
 border-bottom: 1px solid #000000;
 position: relative;
 height: 24px;
 z-index: 9000;
}

Theming Elgg

[254]

/***** PAGE MESSAGES ******/
.elgg-system-messages {
 position: fixed;
 top: 24px;
 right: 20px;
 z-index: 2000;
}
.elgg-system-messages li {
 margin-top: 10px;
}
.elgg-system-messages li p {
 margin: 0;
}

/***** PAGE HEADER ******/
.elgg-page-header {
 position: relative;
 background: #4690D6 url(<?php echo elgg_get_site_url();
 ?>_graphics/header_shadow.png) repeat-x bottom left;
}
.elgg-page-header > .elgg-inner {
 position: relative;
 height: 60px;
}

/***** PAGE BODY LAYOUT ******/
.elgg-layout {
 min-height: 360px;
}
.elgg-main {
 position: relative;
 padding: 10px;
}
.elgg-main > .elgg-head {
 padding-bottom: 3px;
 border-bottom: 1px solid #CCCCCC;
 margin-bottom: 10px;
}

/***** PAGE FOOTER ******/
.elgg-page-footer {
 position: relative;
}
.elgg-page-footer {

Chapter 9

[255]

 color: #999;
}
.elgg-page-footer a:hover {
 color: #666;
}

We also override the primary CSS view, copy the original code into it, and add a line
near the bottom to include a new mobile CSS view.

echo elgg_view('css/elements/mobile', $vars);

This mobile CSS view is used to override specific elements of the default theme
without overriding complete views. We decrease the font sizes and simplify the site
menu. When we are done, we have a site that looks like the following screenshot:

Because much of Elgg's CSS uses fluid layouts, there does not need to be much
restyling of the content. Most of the work in creating a mobile theme is with
navigation. For example, we did not theme the topbar. It takes up too much space
without changes for a mobile display.

Theming Elgg

[256]

Summary
This chapter explained the basics of building a theme and included a tutorial for
creating one. Theming pulls together many skills: graphics design, CSS and HTML,
client-side programming with JavaScript, and working with Elgg's view system.
With the right skills, you can create impressive websites with Elgg that draw viewers
in and keep them coming back.

In the next and final chapter of this book, we walk through the steps of setting up
and running a production website using Elgg.

Moving to Production
This chapter describes what is needed to move from building and testing your
website to using a production server. The server that you used for testing Elgg may
be a laptop, an inexpensive shared hosting account, or the intended production
server. Up to this point, you have been installing and removing plugins, creating a
theme, and trying out Elgg's capabilities without concern for maintaining a stable
site. Backups, server performance, and spammers were also not concerns during the
early phase of the project.

Now you are planning the production site and have a lot of questions. What sort of
hosting plan do I need? How can I get the most out of my server? How do I back up
my site? What do I do if e-mails from the site are being marked as spam? How do I
upgrade to the latest version of Elgg? This chapter answers these types of questions.
It is a basic introduction to running a production server.

Not all of these questions are relevant to every user of Elgg. If you are supporting a
fixed user population, then growth will not be an issue. If you have an administrator
to maintain the server, then you will not be responsible for several of the areas
covered. This chapter serves as a guide as problems and questions arise and will, at a
minimum, point you in the right direction.

This chapter covers the following topics:

•	 Selecting a server or choosing a hosting provider
•	 Configuring a server
•	 Backing up an Elgg site
•	 Dealing with spammers
•	 Testing and upgrading Elgg
•	 Improving performance
•	 Migrating to a new server

Moving to Production

[258]

Selecting a server
Selecting a server is a very important step in creating a successful site. It can be the
difference between a slow site that people quickly abandon and a site with snappy
performance that people enjoy using. This section provides an overview of the
selection process and includes a discussion of different types of hosting services.

Performance considerations
There is no standard server or hosting package that works for every Elgg site.
Performance benchmarking data captured during operation of a production site is
the best information for selecting a server. Unfortunately, that type of data is not
available when launching a new site. The next best approach is to estimate what you
think you need and plan to upgrade if your site requires more resources. This section
provides background information to help you understand your options.

Competing for resources
There are five limited resources that every web application needs: network
bandwidth, processing power, memory, file I/O, and disk space.

1.	 Network bandwidth: the amount of data that can be
transmitted by the server over some period of time.

2.	 Processing power: the number of computations the server
can perform over a period of time. The number and speed
of the server's CPUs determine how much processing
power a server has.

3.	 Memory: the amount of Random Access Memory (RAM).
4.	 File I/O: file input/output - the amount of data that can be

read from and written to the file system over some period
of time.

5.	 Disk space: the amount of storage space on the server's
hard drives.

With Elgg, there are three primary processes running on a server: the web server,
PHP, and the database. (PHP often runs within the web server process, but for this
discussion we will keep them separate.) The three processes compete for CPU time,
memory, and file I/O.

Chapter 10

[259]

When a web browser requests a page from the server, the request is turned over to
the web server. It in turn gives the request to PHP which pulls information from
the database. PHP uses this data to create a web page which it gives to the web
server for transmission to the browser. When the browser receives the web page, it
then requests the images, JavaScript, and CSS files linked to in the web page. These
requests are also processed by the web server and all contribute to the load on the
server. This communication process is depicted in the following diagram:

As the amount of traffic to the site increases, one of those limited resources will
become exhausted and the performance of the website will degrade. The resource
that runs out first is called the bottleneck. Part of server selection is balancing the
resources so that the server does not run out of RAM quickly while having a lot of
CPU cycles free.

Usage patterns
When estimating what server resources are needed, the place to start is creating a
profile of expected activity on the site. The total number of users rarely matters, but
the number of concurrent users does. Every view of a web page results in several
files being requested from the server, as mentioned earlier, HTML, JavaScript,
CSS, and images. Each of those requests keeps a web server process busy for some
amount of time. Let's assume that a web browser loads four files at a time from
the server and each web server process consumes 64 MB. If there are eight users
requesting web pages at the same time, then it quickly adds up:

4 requests × 64 MB × 8 users = 2 GB.

This does not include the memory that the database server is using nor the other
background processes of the server. If you are planning for a large number of
concurrent users, the amount of RAM and processing power required will be large.

Moving to Production

[260]

The type of activity matters. Users that upload photos and videos consume
significantly more resources than users that write blog posts. A file upload not only
leads to a web server process running for a long time to accept the file, but it also
consumes large amounts of bandwidth and disk space. As another example, consider
users who set their RSS feed readers to check your site's RSS feeds every five
minutes. Each check can involve a web server process plus PHP and database calls.
This creates a consistent load on the server in addition to the more transient load
from people visiting web pages.

General guidelines for server selection
All guidelines are dependent on usage patterns. Heavy use of streaming video,
chat, Ajax refreshes, or large file uploads affects what resources could become
the bottleneck.

•	 The bottleneck for Elgg sites tends to be processor usage first and RAM
second. If you are looking at dedicated servers, then select one with multiple
fast cores and plenty of RAM.

•	 Leave room to grow. You do not want your very fast site becoming sluggish
after only a month of growth. Once you are in production conditions, check
the RAM and processor usage.

•	 Develop estimates but do not put too much faith in them. You should be
able to work from an estimate of concurrent users to the amount of required
RAM based on how much memory the web server and database use on a test
server. It is very difficult, though, to estimate load without observing actual
users so treat those estimates as a ballpark figure.

•	 Consider average and peak usage. You do not want a server that works well
for the majority of the time, but grinds to a halt during peak-time periods.

Hosting options
A popular option for serving a website is paying a company to host it. These
companies purchase the hardware, maintain the servers, perform upgrades, and
provide technical support. Hosting options are divided into categories based on
how many people share the same server, how much control is given to the users,
and the amount of resources available with an account (bandwidth, disk space,
RAM, and processors).

Chapter 10

[261]

Shared hosting
Shared hosting is the most inexpensive hosting option. With a shared hosting
account, your site runs on the same server as tens, hundreds, or even thousands of
websites. This has ramifications for performance, security, and control, as follows:

•	 Performance depends on the load created by the other sites. As traffic on
other sites spikes, your site becomes slower.

•	 There is an increased security risk compared to other forms of hosting.
Depending on the server configuration, insecure web applications being run
by other users can be used by attackers to affect your site.

•	 Web server configuration and software versions are controlled by the hosting
company as any change affects all the sites on the server. In addition, users
of shared hosting are limited to web-based configuration programs to set the
available server parameters.

Shared hosting packages are generally divided into tiers based on bandwidth and
disk space. Exceeding those limits will typically result in suspension of the account.

Shared hosting is not appropriate for most production Elgg sites due to its resource
constraints. Use it for testing or very low traffic sites.

Virtual Private Server
A Virtual Private Server (VPS) is a step up from shared hosting. There are still
multiple sites running on the same physical server, but each site gets its own virtual
machine. The virtual machines have RAM and disk space allocated to them, but
share the CPUs of the physical server. Many hosting companies offer tiers of service
along with increased amounts of RAM and disk space. They may also offer different
price points based on the number of virtual machines running on a server.

Performance on a VPS depends on the load created by the other users, but there
are usually fewer VPS accounts on a physical server than with shared hosting. A
VPS provides shell access and can be configured like a physical server. There is
often a web-based control panel for those who are not comfortable with editing
configuration files. In addition to offering more control than shared hosting, a VPS is
more secure by nature of being a virtual machine.

A VPS is a good introduction to paid hosting. It offers better performance and
control than shared hosting at a much lower cost than a dedicated server.

Moving to Production

[262]

Dedicated server
With a dedicated server, you are paying the hosting provider to maintain a physical
server for you. It costs much more than shared hosting or a VPS, but you do not have
to share the server with anyone else. A dedicated server provides significantly better
performance than shared hosting or a VPS.

Dedicated servers are available as managed or unmanaged. With a managed server,
the hosting company monitors the server, installs security patches, and performs
upgrades. With an unmanaged dedicated server, the maintenance is done by you.
Managed servers obviously cost more because of this.

Even with a dedicated server, there are often caps on how much bandwidth can be
consumed per month. If your site has extremely high bandwidth requirements, then
look into an unmetered server. Besides selecting between managed/unmanaged and
metered/unmetered, the hardware configuration determines the price of the service.
There are choices on the type of processor, number of processors, amount of RAM,
and hard disk size.

A dedicated server is a good choice for a high traffic Elgg site.

Cloud hosting
Cloud hosting is the latest buzzword in hosting circles and what is meant by the
term depends on the hosting provider. The general idea is that you are not limited to
running on a single physical server, but instead your application runs in the "cloud".
The cloud is simply a set of connected servers operated by the hosting company.
The promised benefits of cloud hosting are inherent scalability and robustness to
hardware failures. The reality is that cloud hosting is not the panacea that is sometimes
advertised. Hardware failures can still bring down sites and achieving the advertised
scalability can require architectural changes to the web application being hosted.

Depending on the provider, a cloud hosting account can resemble a shared hosting
site with limited access or a VPS. Performance depends on how many people are
running on the same physical server and the specifications of the server. Do not
select cloud hosting just because of the buzz surrounding it. Compare it against VPS
and dedicated servers if you are interesting in using this type of hosting.

Hosting company selection
When evaluating a particular hosting company, you should check their reputation
in online forums (while realizing that there are no perfect hosting providers out
there). Besides looking at reputation, cost, and the technical specifications of hosting
packages, there are other questions to consider when selecting a hosting provider.

Chapter 10

[263]

Does the company provide an upgrade path? As your site grows, you may need
additional server resources, whether upgrading a VPS account or moving to a
dedicated server. Does the company offer a tier of packages? Would you need to
reinstall your site to upgrade?

Is a backup plan available? Hosting providers may back up your data for free,
charge an additional fee, or not offer it at all.

How and when is support offered? It is one thing to promise 24/7 support and
another to offer easy access to qualified technical support staff. Is support offered
by e-mail, chat, or phone? What are the expected wait times? How much does
support cost?

What happens if the bandwidth limits are exceeded? Are you notified as you
approach the limits? Is your account suspended? What is the cost to purchase
additional bandwidth?

Where is the server located? If you expect your users to come from one area of the
world, then you can sometimes achieve faster response times by using a server that
is physically close to the users. There can also be legal ramifications connected to the
location of the server.

Configuring a server
Server configuration covers a wide range of topics (ranging from security to
performance to maintenance) and it would take a library of books to cover all of them.
In this section, we describe the different server applications that can be configured and
tuned. References are provided to books and websites for further reading. Always test
configuration changes on a test server before modifying a production server. A faulty
configuration can cause the server applications to cease working.

Apache
Apache, the most popular web server software, is likely running on your server.
Other web server software includes Internet Information Services (IIS) from
Microsoft, lighttpd, and nginx. With a typical Apache installation, configuration is
stored in two or three different locations. There is a server-wide configuration file
(often named apache2.conf or httpd.conf). This file includes other configuration
files that are specific to a particular site, web application, or module. On a Linux
server, these files are located somewhere under the /etc directory. The third type
of configuration file is the .htaccess file. It is included in the same directory as the
web content. Its configuration options override any of the previous settings for that
directory and its subdirectories.

Moving to Production

[264]

The standard configuration provided with Apache should work for Elgg with two
exceptions. First, Elgg requires that the URL rewriting module be enabled (called
mod_rewrite). Second, Elgg stores its rewrite rules in its .htaccess file which will
not be processed unless AllowOverride is enabled for its directory. If you need
assistance making these configuration changes, then ask the technical support staff
for your server or use the many resources available on the web including the Elgg
wiki (http://docs.elgg.org/).

There is a tremendous amount of information available in Apache's logs. The
logging is used to track site traffic, record errors, and debug configuration issues.
The standard Apache installation uses two types of logs: access logs and error logs.
The access log is written to whenever a request is made of the web server. A log
entry will generally contain the address of the requested resource, the time and date
of the request, the IP address of the requester, and a web browser description. Not
surprisingly, the error log is a record of errors and warnings such as when a web
browser requests a page that does not exist.

Two valuable online references for working with Apache are the online
docs at http://httpd.apache.org/docs/2.2/ and the Apache wiki at
http://wiki.apache.org/httpd/. If you prefer a book on the topic, then there
are many to choose from. It is best to select one written for your skill level. Beyond
the introductory and general guides to the Apache HTTP server, there are books
written on security, performance, and development.

PHP
PHP creates the web pages that Apache serves. The primary configuration is
stored in a php.ini file whose location is server dependent. You can locate this
configuration file and take a look at PHP's current configuration by creating a PHP
file in your web server's root directory (where your web application code is located)
with the code:

<?php phpinfo(); ?>

http://httpd.apache.org/docs/2.2/
http://wiki.apache.org/httpd/FrontPage

Chapter 10

[265]

Viewing this page displays the server's PHP configuration:

In addition to the options in the php.ini file, parameters can also be overridden
in .htaccess files. Elgg's .htaccess file sets several options. Your php.ini
configuration file probably has over one hundred settings. There are only a small
number that ever need to be changed from the defaults. One parameter that Elgg sets
in its .htaccess file is memory_limit. It determines the amount of available memory
for processing a PHP script. The PHP code and variables consume this memory. If a
script exceeds the limit, then PHP stops with a fatal error. You may need to increase
this limit if you are using a large number of plugins. A complete list of core PHP
parameters is found at http://php.net/manual/en/ini.core.php.

http://php.net/manual/en/ini.core.php
http://php.net/manual/en/ini.core.php

Moving to Production

[266]

The parameters that you are most likely to adjust are those that deal with memory,
execution time, file uploads, session length, and modules. Modules are like plugins
for PHP and add significant functionality. Elgg requires that the GD module be
enabled as it is used for resizing images. Other modules may be required depending
on what Elgg plugins you are running. The best reference material for PHP
configuration is on the web. The PHP site (http://php.net) and Google searches
will find most of the information that you need.

PHP logging is very useful for debugging configuration and application issues. By
default the messages are sent to the Apache error log. This can be changed with the
error_log setting:

error_log = /var/log/php.log

On a production server, errors should not be written to the screen. This is set with
the display_error setting. Elgg's .htaccess turns the display of errors off by
default. The verbosity of the log is determined by error_reporting. To report all
errors and warnings, the following settings can be used in the php.ini file:

error_reporting = E_ALL & ~E_NOTICE & ~E_STRICT

The other important setting is log_errors. It should be set to 1, otherwise fatal
errors will not be written to the error log.

MySQL
MySQL is the database server that Elgg uses. Its primary configuration file is named
my.cnf and is generally located in /etc or /etc/mysql/ on a Linux server. It is
rare that an individual new to web applications would need to adjust MySQL's
configuration.

MySQL provides three different types of logging: errors, general queries, and slow
queries. The error log includes information about the server starting, stopping,
and any errors that occur while running. General query logs are typically turned
off as they grow too quickly. The slow query log is useful if you are experiencing
performance issues and are knowledgeable about SQL.

The MySQL reference is available online at http://dev.mysql.com/doc/. There are
also general guides to MySQL Administration and books on specific topics such as
security and performance.

http://php.net/
http://php.net/
http://dev.mysql.com/doc/

Chapter 10

[267]

Cron
Cron is a program that executes tasks at certain times. For example, cron can run a
backup script every night at midnight. Elgg uses cron to hit particular web pages
at set times. When the web pages are loaded, Elgg runs tasks such as cleaning up
garbage in the database or rotating the log. The following is what Elgg's example
cron configuration looks like:

Location of GET (see: http://docs.elgg.org/wiki/What_is_get)
GET='/usr/bin/GET'

Location of your site (don't forget the trailing slash!)
ELGG='http://www.example.com/'

The crontab
Don't edit below this line!
@reboot $GET ${ELGG}cron/reboot/
* * * * * $GET ${ELGG}cron/minute/
*/5 * * * * $GET ${ELGG}cron/fiveminute/
15,30,45,59 * * * * $GET ${ELGG}cron/fifteenmin/
30,59 * * * * $GET ${ELGG}cron/halfhour/
@hourly $GET ${ELGG}cron/hourly/
@daily $GET ${ELGG}cron/daily/
@weekly $GET ${ELGG}cron/weekly/
@monthly $GET ${ELGG}cron/monthly/
@yearly $GET ${ELGG}cron/yearly/

The @hourly line causes GET to load the page http://www.example.com/cron/
hourly/ once an hour. When that happens, Elgg notifies any plugins that are
registered to run hourly and they do whatever they need to do. The same thing
occurs for the other time intervals shown in the preceding example.

Shared hosting sites and some VPSs provide a web interface to set up cron jobs. With
a shell account, you can configure cron with the command:

crontab -e

Running this command loads the default editor with the current crontab (cron table).
Editing and saving the file reloads the cron jobs. To verify that this is working, check
the access log of Apache. It should contain requests for /cron/minute/ each minute.

http://www.example.com/pg/cron/hourly/

Moving to Production

[268]

E-mail
E-mail plays two vital roles in Elgg: new users receive e-mails to validate their
accounts and notification e-mails are sent when activity occurs. Elgg uses the PHP
function mail() to send e-mails. The mail() function passes the message to the
server's Mail Transfer Agent (MTA). The MTA sends the message out on the
Internet to start its journey to the recipient's e-mail account.

If you are using a hosting company, then it handles the configuration of PHP
and the MTA. Otherwise, you can read more on PHP's mail configuration at
http://www.php.net/manual/en/mail.configuration.php. Most popular MTAs
(such as Sendmail and Postfix) also have books available for administering them.

Properly configuring PHP and the MTA does not guarantee that your e-mail ends
up in your recipients' inbox. The e-mail must pass through spam filters to reach its
destination. It is not uncommon for Elgg account validation e-mails to be filtered out
by large mail sites such as Yahoo and Hotmail. This typically happens because the
mail providers do not trust your server.

There are steps that you can take to increase the probability that your e-mails pass
these spam filters. These steps have names such as Sender Policy Framework (SPF),
DomainKeys, and SenderID. They are authentication protocols that attempt to
filter out spoofed e-mails. A spoofed e-mail message is one that claims to be from
a particular server, but was actually sent from a different one. These protocols
provide a method for checking that the server that sent the message was approved
for sending e-mail for that e-mail address. Your hosting provider should be able to
perform this configuration for you so that Yahoo and Hotmail will trust your server.

Managing the site
After the server is configured, Elgg is installed, and your site's membership is
growing, there are other administrative tasks that should be performed on a daily
basis such as backing up your site, stopping spammers, and interacting with the
users. This section provides an overview of these important tasks.

http://www.php.net/manual/en/mail.configuration.php
http://www.php.net/manual/en/mail.configuration.php

Chapter 10

[269]

Backup
Servers crash and hard drives fail. It is a reality of server administration that cannot
be escaped. You need to prepare by regularly backing up your site. There are three
primary components to every Elgg site:

1.	 Code (Elgg and your plugins).
2.	 Database.
3.	 User files in data directory.

With backups of these three components, you will always be able to restore a site
if a failure occurs. The other components that should be backed up are a server's
configuration files (Apache, PHP, MySQL, cron, e-mail server).

Code
You have control of when the code of your site changes, making this back-up task
easier. Modifications of the code probably occur rarely for your site so a manual
back-up strategy is sufficient. A common approach is creating an archive (zip file
or tarball) of the code after every change and saving that on a separate computer.
For critical Elgg sites, you should consider using a code repository tool such as
Subversion to manage the version of code deployed to the production server. A
code repository does more than allow you to restore the code in case of a serious
hardware failure. With it, you can track the deployment timeline and revert to a
previous version if there are stability problems.

Database
The database should be backed up on a regular basis. Many sites dump the database
nightly to a file during low traffic periods. This can be done using an Elgg plugin
or using a custom script that runs as a cron job. MySQL has a client program called
mysqldump that exports the database as a text file:

mysqldump -u <user> -p<password> <database> > <dump_file>

Once the database is dumped, it can be compressed and transferred to a different
location through e-mail, FTP, or rsync. It is best to include the date in the name of the
dump files and keep several of the most recent backups around in case an issue is not
discovered the same day it occurs.

Moving to Production

[270]

Files
When a user uploads a profile photo or any other type of file, it is stored in the data
directory. If your users upload many videos and photos, then a backup of these files
is significantly larger than the back up of the database. One common approach to
backing up the files is to use a back-up client on the server to send the files to a tape
or backup server. Your hosting provider may provide this service, possibly for an
additional cost. There are also commercial companies that provide backup solutions.

If you have a server with multiple disks, then mirroring the files to another disk is
sufficient for recovering from most problems. The do-it-yourself approach to file
backup is to compress the files and transfer them to another server or set up an
incremental backup solution using something like rsync. Be aware that the number
of files can grow quickly and transferring an entire backup can take a long time.

Server configuration
You should include any configuration files that you have modified in your
backup plan. Often, getting the right configuration is a process of trial and error.
Redoing that configuration will not be a pleasant experience, especially after a
server failure. Unlike the other backups, this can be done manually whenever the
configuration is modified.

Restoring
You do not have a backup system in place until you test the restoration process.
This is best performed on a test server. When you test the restoration, be sure to
document each step to use as a guide if a failure does occur.

Log rotation
Your server should be set up to automatically rotate the Apache and MySQL logs.
Rotating a log file involves backing up the current log file, compressing it, removing
older log files, and starting a new log file. This keeps the log files manageable in size
and provides a record of recent activity.

Beyond those log files, there is the Elgg system log that is stored in the database.
Elgg is distributed with a plugin that rotates that log by making a copy of the system
log table and then emptying the log table. It does not delete older system log table
backups so you will need to occasionally clean those up. If you do not need to keep a
record of all activity on the site for legal or corporate reasons, then you can drop the
old system log tables. (Be very careful about dropping tables. You could easily drop
your entire database.) If you do need to keep the logs as records, then you can export
them as SQL dump files and then drop them.

Chapter 10

[271]

Spam
Every website that allows users to post content has to deal with spammers. A site's
first defense against spammers is user registration. After they join the site, the second
line of defense is detecting and deleting their spam posts, comments, and messages
along with banning or deleting their accounts. The best defense is a layered one that
uses many different approaches.

Registration
You want to make it difficult for spammers to automatically generate accounts. This
is often done with a captcha, which is a test that humans can usually pass but that
computers have difficulty with. The most common captcha is a set of letters or words
that are distorted or partially obscured as shown in the following image:

This type of common captcha used on many sites has been defeated by spammers.
They have been able to write code to automatically fill in the correct text. There are
even services available on the web where spammers can submit the captcha images
to be solved in exchange for small sums of money.

Another captcha is a visual captcha that asks the viewer to select images based
on words:

Moving to Production

[272]

There are also honeypot captchas that insert a hidden field in the registration form.
As a spambot looks at the HTML code, it fills in that field in the form while a human
visitor would not. Another captcha technique is asking the user to solve a simple
math problem before the registration form is processed.

Even if these anti-spam captchas could prevent every single spambot from creating
an account, spammers will still get through the defenses and create accounts. Paid
human spammers are a growing trend in the spam business. Incredibly enough,
spammers are hiring people to solve the captchas and leave spam on sites.

The last registration spam fighting technique that we will cover is blocking
registrations based on IP address. Both spambots and human spammers tend to
use the same IP address as they leave spam on many different websites. There are
services available that maintain a blacklist of these IP addresses. A popular plugin
that uses an IP blacklist is the Spam Login Filter (http://community.elgg.org/
pg/plugins/project/774755). The plugin can submit the IP address to the Stop
Forum Spam service and also has its own internal blacklist.

As you consider how to limit spammers through registration, be aware that the more
difficult that you make it for spammers to register, the more likely it is that you will
also turn away real users.

Detecting spammers
After spammers create accounts, they post links on their profiles, create new
blog posts, post comments, and send messages to other users. There are three
main techniques available for detecting the spammers at work. First, there are
plugins that submit the posted content to spam detection services such as Akismet
(http://community.elgg.org/pg/plugins/project/723965/). Second, there
are plugins that limit how quickly people can post content as spammers often make
tens or hundreds of posts in a short time. Third, your users can report spammers
through the reported content plugin that is distributed with Elgg. Once a spammer is
reported, a site administrator can ban the spammer or delete their account.

Another common spam fighting technique is adding a nofollow tag to links. This
tells search engines not to use this link when calculating the rank of the site that the
link is pointing to. Spammers are less likely to attack a site when they do not get the
benefit of raising their rank in search engines. Elgg adds the nofollow tag to all the
links submitted by users by default.

http://community.elgg.org/pg/plugins/project/774755
http://community.elgg.org/pg/plugins/project/723965/
http://community.elgg.org/pg/plugins/project/723965/

Chapter 10

[273]

Web analytics
While not required, most administrators will want to track the traffic on their
site: how many people are visiting the site, where are they coming from, are they
returning, and what pages are they viewing? There are two main approaches for
web analytics: processing log files and tracking visitors using embedded JavaScript.
A popular log-based solution is the open source application AWStats. It periodically
processes Apache's access log and compiles several reports about a site's traffic
that can be viewed with a web browser. For embedded JavaScript solutions,
Google Analytics offers a wealth of information and there are plugins available for
integrating it with Elgg. Two self-hosted alternative to Google's offering are the open
source packages Piwik and Open Web Analytics. Besides these, there are numerous
other free and paid solutions for web analytics.

Daily tasks
With an active user base, there are administrative tasks to be performed each day.
The types and amount of administration depend on the user base. Possible tasks
include the following:

Monitoring user registration
Occasionally users may have difficulty registering and activating their accounts.
This may be because of captchas on the registration form, spam filters catching the
validation e-mails, or any number of other problems. Your site should provide a
method for a prospective user to contact an administrator to report an issue. You
can also check on invalidated accounts with the user validation by e-mail plugin
distributed with Elgg.

Reviewing reported content
If you are using the reported content plugin that is distributed with Elgg, then you
will want to review the reports on a regular basis. On most sites, members report
spam or other users who are disruptive to the community. It is best to maintain
a page with the site's policies concerning advertising and community behavior
standards to make expectations and consequences clear for the users.

Responding to feedback
Many sites use a plugin to collect feedback from users. The feedback could be reports
of bugs, suggestions for improvements, or expressions of appreciation. Responding
and interacting with users makes them feel like they are a part of the community.

Moving to Production

[274]

Community management
Managing the community can take many forms. It can be dealing with troublesome
users, updating help pages to answer common questions, reviewing groups for
possible duplicates, or involving users in the decision making of the site.

Testing, upgrading, and moving a site
At various times during the life of your site, you will want to test new plugins,
upgrade to a new version of Elgg, or move to a different server. This section provides
a guide for these activities along with pointers to help you avoid common mistakes.

Testing
It is never a good idea to activate a new plugin on a production site without first
testing it. This is one reason why you should have a test site. A test site allows you
to try new plugins, test upgrades, perform stress testing, and evaluate performance
tweaks without disturbing your users. The test site should mimic the production site
as closely as possible including server configuration, code, and data. Depending on
available resources, it could be on a server configured exactly like the production
server, on the production server, or on any other computer. If you do put your test
site on your production server, then do not use it for load testing or trying server
configuration modifications.

Mirroring the production site
In order to create a realistic testing environment, you should copy all of the data
from your production site to your test site. There are detailed instructions on the
Elgg wiki for this (http://docs.elgg.org/wiki/DuplicateInstallation), but the
major steps are as follows:

1.	 Perform a clean install of Elgg for the test site.
2.	 Export the production database.
3.	 Import the database dump for the test site.
4.	 Modify parameters in the database that are site specific.
5.	 Copy users' files from the production site to the test site.

When the test site has the same code and data as the production site, you can be
more confident that any testing results will translate to the production site.

Chapter 10

[275]

Test plan
Adding, changing, or removing code on the production site should be preceded by
testing. The best way to systematically evaluate the changes is to develop a test plan
that covers all of the functionality that could be affected. In its simplest form, a test
plan can be a checklist with a list of user actions and expected responses.

Test plan for blog upgrade
Action Expected Response Success
Save blog post Create post and forward to view of the post ü

Send notifications to user's friends ü

Add entry to activity stream
Save with video Embedded video displayed left justified
Save without title Display error message and forward to input form

The testing can be manually performed by the maintainers of the site. To accurately
replicate user interactions, an account with user privileges should be used for testing
rather than an administrator's account. It is also important to test using different
browsers to capture any browser-related issues.

There are also tools that automate testing of web applications. You can find these
types of tools on the web by searching for web functional testing or web acceptance
testing. By automating the tests, you can develop a suite of tests to run every time a
modification is made before rolling the update out to the production site. A popular
open source testing tool is Selenium. It has a Firefox add-on for recording tests,
which can save a lot of time.

Redirecting e-mail while testing
If your test site uses the mirrored database from the production
site, then testing can cause notification e-mails to be sent to your
users. You will want to disable e-mail or redirect all messages to
a single account. There is a plugin for this: http://community.
elgg.org/pg/plugins/costelloc/read/404328/email-
override-for-testing.

http://community.elgg.org/pg/plugins/costelloc/read/404328/email-override-for-testing
http://community.elgg.org/pg/plugins/costelloc/read/404328/email-override-for-testing
http://community.elgg.org/pg/plugins/costelloc/read/404328/email-override-for-testing

Moving to Production

[276]

Upgrading
The developers of Elgg release a new version every few months. Sometimes the
new releases are focused on fixing bugs and other times they have significant new
functionality. Some releases require modifications to existing plugins. If that is the
case, it takes time for plugin developers to release versions of their plugins that work
with the new release of Elgg. The best policy is to wait until all of your plugins have
been updated before you upgrade.

When you are ready to upgrade, perform a dry run of the upgrade on the test site,
as follows:

1.	 Mirror the production site on your test site (code, database, and
data directory).

2.	 Turn off all plugins not distributed with Elgg.
3.	 Copy the new Elgg code over the old code on the test site.
4.	 Run the upgrade script: http://example.org/upgrade.php.
5.	 Browse the test site looking for problems. Report and deal with the problems

as they are found.
6.	 Copy over any new plugin code and activate.
7.	 Repeat step 5 for the plugins that were updated.

If there are any serious issues with the upgrade, then it is best to determine what
caused the problem, fix it, and run through the complete upgrade process again
on the test site. Once the upgrade goes smoothly (and it usually does), you can
work through a test plan looking for bugs in Elgg or in the plugins. If everything
is satisfactory after testing, then you are ready to upgrade the production site. The
steps for upgrading are as follows:

1.	 Back up the current code, database, and data directory files.
2.	 Copy the new Elgg and new plugin code.
3.	 Run the upgrade script.

Because of the preparation done with the testing site, the upgrade should work
perfectly the first time.

Chapter 10

[277]

Moving a site
If your site is growing, then you may need to move to a more powerful server.
Migrating the site follows the same steps as creating a test site: install a fresh copy
of Elgg, replace the database with the modified database from the previous site, and
copy the users' files in the data directory. There are three common mistakes made
when moving a site, as follows:

1.	 Not creating a fresh install of Elgg on the new server. By the time you need
to move your site, you have forgotten all about the rewrite module of Apache
or the permissions of the data directory. When people try to move everything
without doing a new installation, they do not know whether a problem is
caused by the server configuration or an incorrectly set parameter in the
transferred database. It is better to do the move one step at a time.

2.	 Forgetting to update site configuration in the database. The Elgg database
stores the site's base URL and the locations of the code and the data directory.
Those are often server specific and if they are not changed, the new site will
not work properly. Common symptoms of this include not being able to log
in or an oddly formatted site without a theme.

3.	 Permissions issues on the data directory. The web server needs to have read
and write permissions on the data directory. With Linux, the web server
runs under a special user account that is distribution specific. When moving
files from one server to another, it is possible for the file permissions to get
confused as the web server user account may be different. The best way
to give the web server permissions to the data directory is to change the
ownership of the data directory to the web server's user (for example, the
user is www-data on Ubuntu).

When moving a site from one server to another, there will be a period of downtime
for your users. It is best to practice the move to solve any issues before the actual
migration and to develop an estimate of how long this process takes. After the
database on the current site is dumped to a file, you should turn off access to the
site so that users cannot create new content. There is a plugin available on the Elgg
community site for taking a site offline: http://community.elgg.org/pg/plugins/
jdalsem/read/384765/maintenance. If you are using the same domain name on
the new server, then there will be a period of time when DNS servers are pointing to
the old site for that domain name. This can be explained to the users before the site
migration occurs.

http://community.elgg.org/pg/plugins/jdalsem/read/384765/maintenance
http://community.elgg.org/pg/plugins/jdalsem/read/384765/maintenance

Moving to Production

[278]

Performance
People evaluating Elgg are often very interested in its performance – sometimes to
the exclusion of other considerations. What they do not realize is that growing a
website so that it has enough traffic to affect site performance is much more difficult
than tuning or upgrading a server. Very few Elgg sites require anything more than a
single dedicated server (and many never end up requiring a dedicated server).

Benchmarking
The most important step for increasing performance of your Elgg website is
benchmarking. Without recording performance measures, you cannot tell what
the current bottleneck is and you cannot predict the bottlenecks of the future. This
knowledge is necessary for addressing performance issues.

Just like many of the other topics covered in this chapter, entire books have been
written on this topic, so this is a cursory overview. Several resources are listed at the
end of the section for those who want to dig deeper into this.

Monitoring and data collection
You do not want to wake up one day to find out that your server is maxed out. By
tracking server statistics over time, you can predict when the next performance
upgrade should happen based on historical data and determine what the likely
bottleneck will be.

Data
At a minimum, you should be collecting the following:

•	 Processor usage
•	 Memory usage
•	 File I/O
•	 Network bandwidth utilization
•	 Database statistics

The data should be collected and logged on a regular schedule. If the data is
available in report or graph form, then it will be easy for the administrator of the
server to notice trends or problems.

Chapter 10

[279]

Tools
There are tools available for collecting this data, processing it, graphing it, and
sending alerts based on it. Cacti (http://www.cacti.net/) is an open source tool
for graphing server statistics that are collected by RRDtool. The following is an
example plot of database activity using Cacti:

Additional performance statistics packages include Munin and ZenOSS. There are
also a number of command line tools for collecting performance statistics such as
vmstat, iostat, netstat, sar, and mytop.

Stress testing
If you have not gone live with your production server or you have a test server, then
stress testing is a great way to evaluate modifications to the server, estimate how
much traffic the server can handle, and find bottlenecks. A stress test uses a tool that
requests web pages from the server to simulate the load created by many visitors.

Data
These automated stress testing tools are designed for measuring latency and
throughput. Latency is how long a user has to wait to see the requested web page.
Throughput is the number of requests that can be served per second. (Throughput
can also be measured in the number of bytes per second served.) In addition to
collecting the output of the stress testing tool, you should also collect information
about what is happening on the server (memory usage, database stats, and so on) to
determine where any bottlenecks exist.

Moving to Production

[280]

Tools
There is a wide range of automated stress testing tools available, ranging from
command line tools that repeatedly request a single HTML page to GUI-based
tools that can automate tasks such as logging in and posting a blog entry. It is
recommended that you run the tool on a different server than the one being tested.
This eliminates any competition between the testing tool and the web server
processes. If the two servers are close in a network sense that also eliminates any
latency issues caused by a slow network connection. Popular tools include the
following:

•	 ApacheBench (http://httpd.apache.org/docs/2.0/programs/ab.html)
•	 httperf (http://code.google.com/p/httperf/)
•	 Siege (http://www.joedog.org/index/siege-home)
•	 Jmeter (http://jakarta.apache.org/jmeter/)

Using your web browser is not a good way to benchmark your site. It does not
evaluate loading the server, there can be inaccuracies due to browser caching, and
network latency can be a problem.

Easy performance gains
Here are three changes that are easy to make that can have dramatic effects on the
performance of your site. The first is turning on Elgg's simple cache on the site
administration page. The simple cache stores copies of files that Elgg normally would
have dynamically created with each request. This saves memory and processing
power that can be used to serve other requests.

The second change is installing an opcode cache for PHP. Each time a web page
is requested, the Elgg's code is loaded, compiled to opcodes, and then executed.
Compiling can consume a significant percentage of the page creation time. An
opcode cache stores the compiled code in memory so that the opcodes can be
used without passing through the compilation step. This drastically improves
performance and is recommended for any production server. There are several
opcode caches available for PHP. APC is a popular option and has been used on
many large Elgg sites. The default configuration works well so the only setting you
may want to tweak in the beginning is apc.shm_size based on how much memory
your particular Elgg code base requires. The function apc_sma_info() can be used
to evaluate memory usage.

http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://code.google.com/p/httperf/
http://code.google.com/p/httperf/
http://www.joedog.org/index/siege-home
http://www.joedog.org/index/siege-home
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/

Chapter 10

[281]

The third is upgrading your server. If you are using a VPS package, try moving up
a tier or two. With a dedicated server package, increase the amount of processing
power and RAM. This is the most expensive and involved change so you only want
to consider it after the trying the other two first.

Advanced performance tuning and scaling
More advanced tuning of servers or scaling by using multiple servers requires
significant technical knowledge. Both Apache and MySQL can be tuned to increase
performance for your particular server and your site's traffic patterns. Be aware
that a set of parameters may work well under some conditions and cause poor
performance under others. Testing configuration parameter changes under different
loads to validate the modifications is recommended.

Caching
Caching is one of the most common techniques to improving performance of a web
application. Caching is storing data that was dynamically generated so that the next
time it is requested, the data is loaded from the cache rather than generated again.
Caching is a trade-off. In exchange for using more memory or file I/O, the demands
on the server's processors decrease.

Caching occurs throughout the process of requesting, creating, and receiving a
web page:

•	 Browser caching lets a browser skip requesting a resource like an image or
JavaScript file that it has already downloaded. This is configured by setting
directives for Apache. Elgg also sets caching headers on CSS and JavaScript
files.

•	 A proxy cache like Squid can be used to quickly serve static files such as
images rather than burdening Apache with those types of requests.

•	 PHP opcode caching and Elgg's simple cache were discussed in the previous
section.

•	 Elgg's query cache stores query results per page load. If the same query is
executed more than once when generating a web page, then Elgg uses the
results stored in its own memory cache rather than asking for the data from
MySQL. This does not help with queries that occur on different web requests
because the query cache only exists for a single page at a time.

Moving to Production

[282]

•	 Memcache can replace Elgg's query cache. The query results are stored in
memory and stay resident after any page has been created. This is much
more effective than Elgg's native query cache. Memcache can be run on
the web server or on its own server. Elgg's Memcache implementation is
considered experimental at the time of this writing.

•	 MySQL's query cache also stores the results of queries in memory, but the
cache is invalidated if the contents of a table used in the query have changed.

Caching data does not guarantee faster performance. With a small query cache and a
large number of unique queries, it is not likely that the needed query is in the cache.
This is called a cache miss (as opposed to a cache hit). When this happens, resources
are used to check the cache, retrieve the data from the database, and add the result
to the cache. The second step happens whether or not caching is used. The other two
steps add useless overhead. In this scenario, it would be faster to not use a cache.

Multiple servers
When the resources of a server are exhausted and there is no more tuning or
tweaking to do, there are two choices: get a faster server or spread the load over
more than one server. Upgrading the server is called vertical scaling while using
multiple servers is horizontal scaling. There is a limit to the amount of vertical
scaling possible and it becomes increasingly expensive as that limit is approached.
Horizontal scaling is cheaper and offers a higher performance ceiling at the cost of
adding complexity to the system. The best choice for a particular site depends on the
current load and expectations of future growth.

Resources
It is very difficult to write a book on the the topic of performance tuning because
the range of required skills is so broad. There are a few general books that can serve
as references but they are not written for the beginner. "Web Performance Tuning",
Patrick Killelea, O'Reilly Media, is a good, if dated, primer in this area (it was written
in the Internet Explorer 5.5 and Netscape 4 era). "Building Scalable Web Sites: Building,
Scaling, and Optimizing the Next Generation of Web Applications", Cal Henderson,
O'Reilly Media, contains a lot of great information and is intended for a technically
proficient audience.

Chapter 10

[283]

A good web resource for tuning Apache is its documentation (http://httpd.
apache.org/docs/2.2/misc/perf-tuning.html). Furthermore, most books on the
Apache web server include a chapter on performance tuning. MySQL has a wealth
of material available starting with "High Performance MySQL: Optimization, Backups,
Replication, and More", Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, Jeremy Zawodny
D., Arjen Lentz, Derek J. Balling, O'Reilly Media. Another excellent resource is the
MySQL Performance Blog at http://www.mysqlperformanceblog.com/.

Reporting bugs
When you or a user comes across a bug, there are a few steps to follow to help
developers fix it.

Steps to reproduce the problem
The best bug reports not only describe the problem, but list what steps can be
followed to replicate the problem. Here is an example of a bad bug report:

The blog plugin doesn't work. It loses my text.

And here is a good report:

All the text I just typed disappeared when I previewed the blog post. This happens
regardless of what browser I use and I'm using Elgg 1.7.2.

Here are the steps to reproduce this:

1.	 Click on Write blog post.
2.	 Enter text into the body area.
3.	 Click on Preview.
4.	 Click on Return to Edit.
5.	 The text is all gone.

Not only does the good report list the steps for reproducing the bug, but it also
mentions the version of Elgg the problem occurs with and whether this is browser
dependent. Bug reports that have this type of information save time because a
developer does not have to write back with obvious follow-up questions.

http://httpd.apache.org/docs/2.2/misc/perf-tuning.html
http://www.mysqlperformanceblog.com/
http://www.mysqlperformanceblog.com/

Moving to Production

[284]

Elgg or plugin?
There are many times when a user of Elgg reports a bug to the Elgg developers that
turns out to be caused by a bundled plugin. (A bundled plugin is any plugin not
distributed with Elgg. They are also called third-party plugins.) The best way to
test for this is to temporarily turn off all bundled plugins and see if the problem still
occurs. It is also a good idea to have a test site set up for this. If the bug is still there
with the plugins turned off, it could be due to Elgg or it could be due to a server
configuration issue. If you are not sure, then the best place to ask for help is the
forums on the Elgg community site.

Reporting the bug
If the bug is in Elgg or a plugin distributed with Elgg, then it should be reported to
Elgg's bug tracker at: http://trac.elgg.org/. The bug tracker requires that you
create an account before you can submit a bug report. After it is submitted, you
will receive e-mails related to the status of this ticket such as questions from the
developers or a notification when it is fixed. Do not expect that the bug will be fixed
the same day you report it. Bugs are prioritized by how severe they are and how
many people they affect. Depending on the bug, it may be days, weeks or months
before it is fixed.

If the bug is in a plugin that you downloaded from the Elgg community site, then
you should report the bug to the developer who wrote it. The easiest way to do this
is to leave the bug report as a comment on the plugin's web page. This notifies the
developer and lets other people see the report if they are having a similar problem.

Summary
Using Elgg in a production environment involves a wide range of skills. There is
selection and configuration of the server. The Elgg application and its users require
administrative attention. Backups must be made in case anything goes wrong
with the server. There is also performance tuning and upgrade planning to handle
growth. The amount of time and effort required depends on factors such as the
criticality of the site and its growth. If a growing user base is causing you to spend
time with the MySQL manual (or hire someone to tune your server), then it is a good
problem to have.

http://trac.elgg.org/

Developer's Quick
Start Guide

This is a short developer's guide for the Elgg framework from a top down
perspective. It explores the concepts behind Elgg's design and introduces the design
patterns used by Elgg. It also describes the core components that a developer
needs to know. For a more tutorial-based introduction to developing with Elgg, see
Chapters 7-9.

The intended audience of this guide is developers who are building a website with
Elgg or who are interested in building plugins. It assumes knowledge of PHP and
fluency with software development terminology.

As a quick start guide, it does not cover topics in detail. Instead, the emphasis is on
providing a big picture view of Elgg. As each core component is covered, pointers to
the source code are given for further investigation. In addition to the documentation
in the source code, Elgg's wiki (http://docs.elgg.org) is a good resource for
learning specifics about how Elgg works.

Overview of Elgg as a framework
This overview covers basic questions about Elgg such as whether it is object-oriented
and what kind of template language is used. These are the sorts of questions that
are valuable to have answers to before looking at the design and structure of
a framework.

http://docs.elgg.org/

Developer's Quick Start Guide

[286]

What is Elgg?
Elgg is an open source framework for developing social networking and social media
websites. It is written in PHP, uses MySQL for data persistence, and includes jQuery
for client-side scripting.

Object-oriented or procedural?
The answer is both. The data model of Elgg is primarily object-oriented, while
the rest of the framework is mostly procedural. This provides flexibility to plugin
developers. For example, a page controller in Elgg can be a script, a function, or a
class method. The choice is left up to the developer.

Does it use the Model-View-Controller
pattern?
Elgg is not a textbook implementation of the Model-View-Controller (MVC)
pattern. Elgg does not use the terminology of MVC, which can make it difficult at
first to see the pattern. Viewing it from an MVC perspective, though, does make it
easier to grasp Elgg's design.

Convention or configuration?
The answer to this question is also both. The model and controller use
configuration exclusively and the view system is primarily convention-based
with some configuration.

Is it extensible?
Elgg has a modular architecture that uses plugins to extend or modify the core
engine. Without any plugins enabled, an Elgg site supports account creation, user
settings, administration and not much else. This plugin-based approach gives
developers flexibility and control when building web applications with Elgg.

Extensibility is also provided through an event-based hook system. Rather than
editing core code, developers can modify the behavior of the framework by
registering callbacks for an event. The callbacks perform their own processing of
the data, prevent the core from taking an action, or change the output of a function.
For example, every time a blog post is saved, an event is fired. A callback function
registered for that event could check for spam and reject the post.

Appendix A

[287]

What template engine is used?
Elgg uses PHP as its template engine. This results in a flexible view system since the
full power of PHP is available. Developers also do not have to learn a new template
language to use Elgg as they would with an engine like Smarty. On the downside, an
expressive template language such as PHP is a temptation to mix controller code into
the views.

A Model-View-Controller perspective of
Elgg
This section provides an overview of Elgg through the lens of the MVC pattern.

Overview
It all starts with a request. The most common scenario is a web browser requesting
an HTML page. Let's assume it is a request for the web page that displays Joe's latest
vacation photos. The request arrives at the controller. The controller confirms that
Joe exists as a user at the site. It tells the model to increment the view counter on the
photo album. The controller then passes the album identifier over to the view for
rendering. The view pulls the photo objects from the model and creates the HTML
page that is sent to the web browser.

Controllers
Elgg uses the Front Controller pattern with a twist. In the Front Controller pattern,
every request is routed through a single controller. This is unlike web applications
that use individual scripts to handle different types of requests (for example,
logging in uses login.php, posting a comment uses post-comment.php, and so
on). The twist with Elgg's implementation of this pattern is that it has two primary
front controllers. One front controller handles actions, which usually involve the
submission of a form. The other front controller handles requests for pages, which
are most often HTML pages.

Developer's Quick Start Guide

[288]

The job of the front controller is loading the framework and dispatching the request
to the appropriate secondary controller. A page controller processes the parameters
of the request, updates the data model, and turns the processed request over to the
views system. An action controller is similar except that it does not turn a request
over to the views system, but instead forwards the requester to a new page. In Elgg,
these controllers are called handlers.

The following diagram shows request processing logic inside the controller box of
the overview diagram. The diagram includes three of the page handlers provided by
plugins as examples of secondary controllers.

The two primary handlers are located at /engine/handlers/.

Model
The model of Elgg consists of three parts:

1.	 Data model classes that manage entities, metadata, and relationships.
2.	 Helper functions that build queries based on parameters (give me the 10 latest

blog posts written by Bob).
3.	 Database access layer that provides an interface to the MySQL database.

The data model supports a wide range of use cases because of its simple and flexible
design. Developers should use Elgg's data model rather than writing their own
queries or creating their own tables.

Appendix A

[289]

Views
The views system renders data into HTML (or other formats such as RSS). It has
two steps. In the first step, the controller requests the view system to render the data
from the model for presentation. In the second step, this output is inserted into a
layout and the complete response is rendered. This is different from frameworks that
use a per page template that lays out an entire page. An advantage of the two step
approach is the ease of maintaining a consistent look across all pages.

The output from the first step is represented by the content box in the following
diagram. The second step handles the remaining sections of a page.

Both steps use templates which are called views in Elgg. Views are short scripts that
provide building blocks for creating web pages and other types of output. In the
preceding diagram, the topbar, header, sidebar, and footer are created by views. As
mentioned earlier, PHP is the template language used in the views.

Each request has a view type that determines the response format. If the view type
is default, then an HTML page is created. If it is json, then the same data is rendered
in JSON format. The view type is set by the controller based on the parameters of the
request. This view type functionality can be used to serve a mobile-specific layout to
mobile devices. An example of this can be found in Chapter 9.

Developer's Quick Start Guide

[290]

Routing
The first stage of routing happens in Apache. Elgg uses rewrite rules to map a
request to one of the primary handlers. The primary handler dispatches the request
to the registered secondary handler.

As an example, the relative URL /action/comments/add/ is routed to the action
handler registered for the "comments/add" action. The relative URL /friends/
johndoe/ is routed to the page handler registered for the friends identifier.

Code location
Apache rewrite rules: /.htaccess

Primary handlers: /engine/handlers/

Library functions: /engine/lib/actions.php, /engine/lib/pagehandler.php

Actions
Actions are generally requests to update the data model. Examples include posting a
comment, deleting a blog post, or joining a group.

Action handlers are registered by mapping a portion of a URL to a script:

elgg_register_action('blog/save', "$action_path/save.php");

The save.php script is included (executed) by the function action() when a request
is made against the /action/blog/save/ URL.

The normal flow of an action handler is as follows:

1.	 Access user-submitted data using get_input().
2.	 Validate data.
3.	 Update data model.
4.	 Queue status message using system_message() or register_error().
5.	 Forward the requester to a page handler using forward().

Code location
Core action handlers: /actions/

Plugin action handlers: /mod/<plugin name>/actions/

Appendix A

[291]

Page handlers
Page handlers manage the response to a request. The response can be a web page, RSS
feed, or any number of other output formats. Because Elgg uses the MVC pattern, the
same handler is used for different response formats; only the views change.

A page handler is registered by mapping a URL identifier to a function, as follows:

elgg_register_page_handler('blog', 'blog_page_handler');

This handler function is called when a request is made to a URL starting with
/blog/.

The handler function receives an array of the segments of the URL. This array is
used to further route the request in the handler. The handler function can process
requests in the function itself, include page handling scripts, or use a page handler
class. Developers can select the approach that best matches the job and their
programming style.

Page handlers include both controller and view code and work like the following:

1.	 Access any user input through get_input().
2.	 Pull data from the model related to the request.
3.	 Push the data into the views system for rendering.
4.	 Send output to the requester using elgg_view_page().

Code location
Core page handlers: directories in /pages/

Example of script-based page handling in a plugin: bookmarks plugin

Example of function-based page handling in a plugin: blog plugin

Framework booting
At the top of the primary handlers, there is the following line:

require_once(dirname(dirname(__FILE__)) . "/start.php");

This loads the Elgg framework, which includes the following:

•	 Loading the core libraries
•	 Connecting to the database

Developer's Quick Start Guide

[292]

•	 Loading Elgg's configuration
•	 Loading plugins
•	 Loading language files
•	 Initializing the user's session
•	 Registering handlers and callbacks

When the boot process is completed, control is returned to the handler. Elgg's
routing and page handling system handle booting the framework before a
plugin is called.

Code location
Boot script: /engine/start.php

Data model
Elgg has a simple, but flexible data model. It supports entities, relationships,
and extenders:

•	 Entities are roughly nouns. A user, group, or blog post are all examples of
entities.

•	 Relationships connect two entities. Two users are friends. A user is a member
of a group. A user is notified when another user posts a comment.

•	 Extenders describe entities. There are two types of extenders: metadata and
annotations. A photo has 10 views. A file has been downloaded 300 times. A
user's location is Brazil. These are examples of data that is stored as metadata
or annotations on an entity.

Entities
ElggEntity is the parent class of all entities. It is an abstract class and is extended by
four classes: ElggGroup, ElggObject, ElggSite, and ElggUser. The Elgg core also
provides three subclasses of ElggObject as shown in the entity inheritance chart.
Plugins can create classes that extend any of these classes.

Appendix A

[293]

Type and subtype
Each entity has a type that corresponds to its primary class. The types are group,
object, site, and user. Each entity can have a subtype. The subtypes allow developers
to subclass one of the primary classes. For example, an ElggPlugin entity has
the subtype 'plugin'. The type and subtype attributes enable the framework to
instantiate the correct class when loading an entity from the database.

GUID
Every entity has a unique identifier. It is global for that Elgg instance.

Owner
Entities are owned by other entities. A blog post is owned by the user who wrote it.
Widgets are owned by the user whose profile they are on.

Container
Entities can also belong to a container. When a user uploads a file to a group, the file
is owned by the user, but its container is the group.

Access
Every entity has an access level. This controls who can view the entity. The access
levels provided by Elgg are private (only that user), the user's friends, anyone logged
in, and public (everyone).

Developer's Quick Start Guide

[294]

Database
There are several ways to represent a class inheritance structure in a relational
database. Elgg uses the Class Table Inheritance pattern. In this pattern, each class
has its own table. Elgg has tables for the first two layers of classes: the superclass,
ElggEntity, and its subclasses. Therefore, loading an entity from the database
consists of loading data from two tables. For example, loading an ElggUser object
loads data from the entity table and the user table. The values from these two tables
are called the entity's attributes. The framework does not create tables for developer-
created subclasses.

Relationships
The ElggRelationship class describes a connection between two entities. It
supports arbitrary relationships, as shown in the following screenshot. The first
entity is the subject of the relationship and the second is the object. If Bob "friends"
Larry, then a relationship is created with Bob as the subject and Larry as the object.

Extenders
The ElggExtender class is abstract and is implemented by two subclasses:
ElggAnnotation and ElggMetadata.

Annotations and metadata are both used to extend and describe entities. They
have a name and a value. A user with a favorite color of blue could be represented
as metadata with the name of "favorite_color" and the value of "blue". A user
downloading a file can be captured as an annotation where the name is "download"
and the value is 1.

Appendix A

[295]

Annotations tend to describe something about another user's content: ratings,
downloads, views, likes. Metadata is used more often to capture information by the
owner of an entity: whether comments are allowed on a blog post, what the tags are
for a file, or how many friends to display in a profile widget. In addition, annotations
support mathematical operations such as calculating the average rating or the total
number of downloads.

It is very easy to add metadata as Elgg uses the magic methods __get() and
__set() on the entity class. Using the favorite color example again, the favorite
color is set with this code:

$user->favorite_color = "blue";

Elgg handles the persisting of the metadata in the database.

Entity attributes are different from metadata
Each entity type has a set of attributes that are persisted in the entity
database tables. Type, subtype, create time, and access level are all
attributes. Attributes and metadata are accessed through the same set
and get methods:
$access_level = $file->access_id;

They act differently though. When an attribute is changed, the entity's
save method must be called to persist the change. In addition,
some attributes cannot be changed (guid, type, and subtype). One
last hint with attributes is to always use the convenience method
getSubtype() as it returns the string representation of the subtype
rather than accessing it directly ($entity->subtype).

Database
Elgg uses the Entity Attribute Value model for storing metadata and annotations.
This model supports the dynamic addition of metadata as demonstrated in the
favorite color example.

The annotation and metadata tables are normalized. Rather than storing the names
and values as strings, they are stored as keys into a strings table.

Developer's Quick Start Guide

[296]

Retrieval functions
Elgg has a set of elgg_get_entities* functions for retrieving entities based on
parameters. These functions take a single argument of an array with key value pairs.
For example, getting the five latest blog posts on the site is done with a call to elgg_
get_entities():

$options = array(
 'type' => 'object',
 'subtype' => 'blog',
 'limit' => 5,
);
elgg_get_entities($options);

The functions support querying by any of the properties that have been mentioned:

•	 elgg_get_entities_from_metadata()

•	 elgg_get_entities_from_annotations()

•	 elgg_get_entities_from_relationship()

In addition, there are parallel functions that both retrieve and display lists of entities.
They take the same parameters and begin with elgg_list_entities.

Code location
The code for the data model is located in /engine/lib/ and /engine/
classes/. The class files all start with Elgg: ElggEntity.php, ElggObject.php,
ElggUser.php, ElggGroup.php, ElggMetadata.php, ElggAnnotation.php, and
ElggRelationship.php.

Entities: entities.php, groups.php, objects.php, sites.php, users.php,
filestore.php, plugins.php, and widgets.php

Relationships: relationships.php

Extenders: extender.php, annotations.php, metadata.php, metastrings.php

Database access: database.php

Appendix A

[297]

Views
Elgg's view system creates the response sent to the requester. It could be an HTML
page, RSS feed, XML document or any other format. The generation of the response
is divided into two parts: rendering the data related to the request and including
the rendered data into the full response. Elgg uses a template system to create
the response.

View templates
Templates allow dynamic content to be included in a static structure. Consider the
following simple example of an Elgg view:

<h2><?php echo $vars['title']; ?></h2>

This view creates the HTML for displaying a title. The h2 tag is static while the value
between the tags is dynamic.

The $vars[] associative array contains the variables passed into the view. The
function elgg_view() is used to generate the output of a view (a string):

echo elgg_view('page/elements/title', array('title' => 'Hi'));

The name of a view is determined by its path. A core view with the name 'input/
button' is located at /views/default/input/button.php.

Views can be nested. The 'page/elements/header' view includes other views:

<?php
/**
 * Elgg page header
 * The header lives between the topbar and main content area.
 */

// link back to main site.
echo elgg_view('page/elements/header_logo', $vars);

// drop-down login
echo elgg_view('core/account/login_dropdown');

// insert site-wide navigation
echo elgg_view_menu('site');

Views are not limited to the variables in the $vars[] array. They can pull
information from the data model or helper functions.

Developer's Quick Start Guide

[298]

Page shells and layout
Rendering the response is divided into two steps. The first is rendering the data
specific to a request and the second step is laying out the page. In code, it looks like
the following:

// render the latest bookmarks as a list
$options = array(
 'type' => 'object',
 'subtype' => 'bookmarks'
);
$content = elgg_list_entities($options);

// render the response
$title = elgg_echo('bookmarks:latest');
$body = elgg_view_layout('one_sidebar',
 array('content' => $content));
echo elgg_view_page($title, $body);

The function elgg_view_layout() lays out the central portion of the page identified
as 'layout' in the preceding layout diagram. The output of the layout is passed to
elgg_view_page() and is inserted into the final response.

Elgg includes generic layouts for one, two, and three columns in addition to a layout
specifically for content pages (viewing blogs, bookmarks, files, and similar types
of content). The views for these layouts are located in /views/default/page/
layouts/. Additional layouts can be added through plugins.

The elgg_view_page() function uses a page shell view to create the complete
response. The default page shell for HTML is located at /views/default/page/
default.php. This view includes the HTML head, topbar, header, and footer.

View type
The view type parameter determines the response format. A request for
http://example.org/blog/owner/johndoe returns HTML formatted for a web
browser. A request for http://example.org/blog/owner/johndoe?view=rss
returns an RSS feed. The standard HTML view type uses the default view, which is
why those views are located in /view/default/. Likewise, the RSS views are in /
views/rss/. Each top level directory in /views/ is a different view type.

http://example.org/pg/blog/johndoe/
http://example.org/pg/blog/johndoe/
http://example.org/pg/blog/johndoe/?view=rss

Appendix A

[299]

Overriding and extending views
Overriding a view replaces a core view with a plugin's view. When a view exists in the
same relative location in a plugin as it does in the core views, Elgg uses the plugin's
view. A plugin that has a file at /mod/<plugin name>/views/default/page/
elements/header.php overrides the 'page/elements/header' view of the core. In
addition to overriding core views, plugins can override views from other plugins.

The content from one view can be added to that of another view by extending it. The
syntax for this is as follows:

elgg_extend_view('page/elements/header', 'mytheme/site_menu');

Special views
There are certain views that Elgg automatically checks for and uses, if they exist. This
is one instance of convention over configuration in Elgg. A primary example of this
is that each entity has a special view used to display it. The name of the view is based
on the entity's type and subtype. The view for displaying a blog post is 'object/
blog' and the view for a user is 'user/default'. Rendering an entity is performed
by passing it to the elgg_view_entity() function, as follows:

$html = elgg_view_entity($blog);

Other special views include the following:

•	 Plugin settings: /mod/<plugin name>/views/default/plugins/<plugin
name>/settings.php

•	 User settings: /mod/<plugin name>/views/default/plugins/<plugin
name>/usersettings.php

•	 Widget settings: Widget settings: /mod/<plugin name>/views/
default/widgets/<widget name>/edit.php

•	 Widget content: /mod/<plugin name>/views/default/widgets/<widget
name>/content.php

Code location
Functions: /engine/lib/views.php

Core views: /views/

Developer's Quick Start Guide

[300]

Events and hooks
Elgg's events and plugin hooks are an important part of the platform's extensibility.
Plugins register functions that are called when an event occurs or a hook is triggered.
Through these callback functions, plugins change or extend the functionality of
Elgg's engine.

There is overlap between the functionality of events and plugin hooks. Broadly, they
can be described as follows:

•	 Elgg events notify the registered callback function that something
has happened

•	 Plugin hooks give callback functions the opportunity to change something
that the core has done

The callback functions are called handlers, but do not confuse them with
page handlers.

Elgg events
Event handlers are registered with the function elgg_register_event_handler():

elgg_register_event_handler('pagesetup', 'system',
 'blog_page_setup');

Multiple handlers can be registered for an event. Each event is identified by two
words ('pagesetup' and 'system' in this example). The handler is passed a single
object involved in the event. If a blog post has been saved, then it is the blog object. If
a comment has been posted, then it is the annotation object. Returning false prevents
any other event handlers from running and may stop the core from carrying out its
current task.

Plugin hooks
Plugin hook handlers are registered with the function elgg_register_plugin_
hook_handler():

elgg_register_plugin_hook_handler('public_pages', 'walled_garden',
 'twitter_api_public_pages');

Plugin hook handlers are passed a return value and other data associated with the
hook. The handler function can return the original return value, a modified version,
or something completely different.

Appendix A

[301]

Event handlers and plugin hooks do not all operate in the same manner. It is best
to check the code and comments where the event or hook is triggered before
attempting to use one. Possible events and hooks are found by searching the
code for elgg_trigger_event() and elgg_trigger_plugin_hook().

Code location
Functions: /engine/lib/elgglib.php

Plugins
The Elgg core does not do much by itself. It provides the foundation and the plugins
determine what the web application truly does. Elgg is distributed with more than
30 plugins that are referred to as bundled plugins. Additional plugins are available
from the Elgg community site (http://community.elgg.org/) and Elgg's Github
site (https://github.com/Elgg).

Plugins can add significant user-facing functionality or customize minor backend
processing. They can override core functionality or extend it. Building a website with
Elgg requires writing and using plugins. Chapters 7 and 8 provide a tutorial-based
approach to learning to write plugins.

Plugins are installed in the /mod/ directory. Each directory in /mod/ is a plugin.
Plugins are structured like mini versions of the Elgg core (though only the classes,
languages, and views directories are required to have those names):

•	 /actions

•	 /classes

•	 /graphics

•	 /languages

•	 /pages

•	 /vendors

•	 /views

•	 start.php

•	 manifest.xml

The manifest file describes the function of the plugin and this information is used on
the plugin administration page. The start.php file is the boot script of the plugin. It
registers callbacks, extends views, and performs other initialization.

http://community.elgg.org/

Developer's Quick Start Guide

[302]

Initialization
When Elgg loads, it includes the start.php file of each activated plugin. In start.
php, a plugin registers a handler for the 'system', 'init' event:

elgg_register_event_handler('init', 'system', 'blog_init');

This event is triggered when all of the core libraries and plugins have been loaded. It
is in this event handler that the plugin does its initialization:

function blog_init() {

 elgg_extend_view('css', 'blog/css');

 elgg_register_page_handler('blog', 'blog_page_handler');

 // Register for search.
 elgg_register_entity_type('object', 'blog');

 $action_path = dirname(__FILE__) . '/actions/blog';
 elgg_register_action('blog/save', "$action_path/save.php");
}

This occurs before a request is dispatched to a handler (action or page handler).

Plugin order
Plugins can override views, actions, and language strings. If more than one plugin
overrides the same view, then it is the plugin that loads last that has its view used.
The same is true for anything else that can be overridden. The plugin order is set on
the plugin administration page.

Conventions
An important convention when writing plugins is namespacing the code to prevent
conflicts with other plugins or future additions to the core framework.

Functions normally include the name of the plugin:

function blog_url_handler($entity) {

Appendix A

[303]

The same is true for language strings (described later in this guide):

'blog:revisions' => 'Revisions',

Views should be namespaced by creating a directory under the default directory
named after the plugin:

/mod/blog/views/default/
 /blog/
 /sidebar/
 /css.php
 /group_module.php

Actions should also begin with the name of the plugin:

elgg_register_action('blog/save', "$action_path/save.php");

In addition to these naming conventions, there are Elgg coding standards included in
the docs directory. These are the standards that the core developers follow.

Themes
A theme is a plugin. A theme plugin overrides parts or the entire default theme
that is built into Elgg. All themes override elements of Elgg's CSS and some themes
additionally override views used to create a site's HTML. A theme may also include
graphics or JavaScript code.

Elgg has its own CSS framework that uses the view system. The primary CSS view is
'css/elgg' and it includes the various modules for layouts, navigation, forms, and
other style categories. Chapter 9 describes the CSS framework and provides a tutorial
for creating a theme.

Code location
CSS views: /views/default/css/

Developer's Quick Start Guide

[304]

Activity stream
The activity stream is called the river in Elgg. Adding an item to the river is
accomplished through a call to add_to_river():

add_to_river('river/object/file/create', 'create',
 elgg_get_logged_in_user_guid(), $file->guid);

The first parameter is the name of the view used to display the river item. The view
must exist before an item can be added.

Code location
Functions: /engine/lib/river.php

Example action: /mod/pages/actions/pages/edit.php

Example view: /mod/pages/views/default/river/object/page/create.php

Notifications
Users can register for notifications on activity by their friends or in their groups. The
core provides e-mail-based notifications and the messages plugin adds site-based
private messaging notifications. Additional types of notifications can be added
through plugins.

A plugin registers with Elgg to have notifications sent whenever one of its objects is
created by a user. The registration is performed in the plugin's initialization function,
as follows:

register_notification_object('object', 'blog');

A plugin can set a custom notification message by registering for the
'notify:entity:message', 'object' plugin hook.

Code location
Functions: /engine/lib/notification.php and the notifications plugin

Appendix A

[305]

Internationalization and localization
Elgg uses the function elgg_echo() to handle the internationalization of user
interface text. The function is passed a string identifier and it is mapped to the
appropriate string in the viewer's language:

$title = elgg_echo('file:yours');

The mappings are stored in language files named according to the language code
(en.php has the English mapping). The mappings are associative arrays:

$english = array(
 'item:site' => 'Sites',
 'login' => 'Log in',
 …
 'tags:site_cloud' => 'Site Tag Cloud',
);

The language files for a plugin are located in its languages directory: /mod/<plugin
name>/languages/. A mapping defined in the core or in a plugin can be overridden
in a plugin. Plugin loading order determines which string is used if more than one
plugin defines a mapping. Plugin language files are automatically loaded by the
Elgg engine.

Code location
Core language file: /languages/en.php

Plugin language files: /mod/<plugin name>/languages/en.php

Lightning round
There are many topics in Elgg development that have not yet been covered in this
guide. This section includes brief descriptions along with pointers of where to look in
the code for more information.

Developer's Quick Start Guide

[306]

Authentication
Elgg uses a simple version of pluggable authentication modules (PAM). The
default authentication module uses the username and password available from the
ElggUser class and stored in the database. Additional authentication modules can be
registered through plugins.

See: /engine/lib/pam.php and pam_auth_userpass() in /engine/lib/sessions.
php

Caching
There are several types of caches in Elgg. There are memory caches for database
queries and loaded objects to reduce the number of database queries. Views can be
cached to files to skip the generation of frequently used views like the CSS view.
There is also experimental support for memcache. The caching code is spread
throughout the engine libraries.

See: /engine/lib/cache.php, /engine/lib/memcache.php, and any of the data
model files.

Configuration
The database username, password, and hostname are stored in /engine/settings.
php. Other configuration settings are stored in the database. Elgg supports system-
wide settings through its data list functions and site-specific settings through its
configuration functions.

See: /engine/lib/configuration.php and the config database table for site
settings and the datalists database table for installation settings.

Debugging and logging
Elgg provides its own logging function: elgg_log(). This function works in concert
with the debug mode in the site settings. The debug mode parameter sets the trace
level to control the amount of information logged. Elgg supports logging to PHP's
error log or to the screen. Additional destinations can be set through a plugin hook.

User actions are logged to the database through the system log functions. There are
two plugins for working with the log: logbrowser and logrotate.

Appendix A

[307]

Elgg also overrides PHP's default logging and exception handling with functions in
elgglib.php.

See: /engine/lib/elgglib.php and /engine/lib/system_log.php.

JavaScript
Elgg includes its own library for client-side JavaScript and Ajax functionality built
on top of jQuery. It is designed to be extensible with plugins able to create their own
namespaced objects (see /mod/embed/views/default/js/embed/embed.php for an
example of that). The library supports submitting to Elgg actions via Ajax, displaying
status messages, and custom client-side events.

See: /js/ and /views/default/js/

Menus
Elgg has many menus. Site-wide navigation, avatar drop-down menus, and a
footer menu are just a few examples. All of the menus are created using a single
API. This API supports static menus, context-specific menus, custom templates, and
hierarchical menus. A valuable resource for understanding the menu system is a
series of articles posted on the Elgg blog. They can be found by visiting
http://blog.elgg.org and searching for "menu".

See: /engine/lib/navigation.php and /views/default/navigation/menu/

Private settings
Private settings are similar to metadata and are used for storing settings for plugins
and users.

See: /engine/lib/private_settings.php

Search
Search is provided through a plugin that uses MySQL's free text search capabilities.
There is a readme file in the plugin's directory that provides an overview of the
plugin and how to extend it.

See: /mod/search/

http://blog.elgg.org/

Developer's Quick Start Guide

[308]

Security
A wide range of topics fits under the heading of security. This section highlights
Elgg's security against cross-site scripting (XSS), cross-site request forgeries (CSRF),
and SQL injection attacks. User-submitted input passes through the get_input()
function, which filters the data. The filtering occurs through a plugin hook that the
htmlawed plugin handles. The action system uses a token-based approach to CSRF
attacks. SQL injection protection is provided by escaping parameters during query
generation. More detailed information is available on the Elgg wiki.

Session handling
Elgg uses PHP's session handling and stores the session data in the database. A
session contains the user object for the logged in user, which is accessed through the
function elgg_get_logged_in_user_entity().

See: /engine/lib/sessions.php

Unit tests
Elgg uses the SimpleTest framework for its unit tests. The unit tests are run through
the diagnostics plugin. Plugins can add unit tests by registering a callback for the
'unit_test', 'system' plugin hook.

See: /engine/tests/ and /vendors/simpletest/

Web services
A REST/RPC hybrid web services API is included with Elgg. It enables sites to
expose a custom web services API. These web services can be used for building
desktop and mobile applications, integrating with third party applications, or
creating mashups with other websites.

See: /engine/lib/api.php

Widgets
Elgg has a simple widget framework. By default, widgets are available on users'
profiles and dashboards. They are easy to create and there are tutorials in Chapter 8
and on the Elgg wiki for building them.

See: /engine/lib/widgets.php

Appendix A

[309]

Summary
Every framework has its own terminology. Learning that terminology makes it easier
to read its documentation and communicate with other developers. The following is
a list of common development terms for Elgg:

•	 Action: A controller that primarily handles form submissions by updating
the data model.

•	 Core: All the code distributed with Elgg. Core views refer to views located in
/views/. Core actions are those in /actions/.

•	 Engine: The libraries and classes in /engine/.
•	 Event: A change in state that results in registered handler functions

being called.
•	 Handler: A function that is called when an event or hook is triggered.

Also, a controller.
•	 Plugin hook: An event-driven mechanism for adding to or modifying the

core engine.
•	 River: The activity stream.
•	 Third-party plugins: Plugins not distributed with Elgg.
•	 View: Templates file in the views system.

Views Catalog
The catalog is intended for two audiences:

1.	 Themers. The catalog provides a visual overview of the view components
available for styling. The location of each view is listed so that the developer
can examine its HTML structure. In addition to adding CSS to style the
default HTML of the view, themes can override views to change the HTML.
Advice is included with the views for creating themes.

2.	 Plugin developers. Building plugins almost always involves using the views
system. The catalog is a quick reference guide to the available views. Many
of them include implementation details that can save a developer time when
learning Elgg.

The views are divided in this appendix into functional groups such as layout,
navigation, forms, and widgets. Each view section has a short description with a
screen capture of the view in action. This is followed by the location of the view and
tips about using it or styling it.

This appendix can be used in combination with the theming sandbox included in
the Elgg developer tools plugin. The sandbox provides themers the opportunity to
experiment with styling elements of Elgg's view system in a controlled environment.

Using views
Before using a view for the first time, check the documentation at the top of the view
file. The documentation lists its parameters and additional information about the
view. For example, here are the comments from the "input/plaintext" view:

/**
 * Elgg long text input (plaintext)
 * Displays a long text input field that should not be overridden
 by wysiwyg editors.

Views Catalog

[312]

 *
 * @uses $vars['value'] The current value, if any
 * @uses $vars['name'] The name of the input field
 * @uses $vars['class'] Additional CSS class
 * @uses $vars['disabled'] Input should be disabled
 */

Views listed in the catalog are considered core views and are found in views/
default/. The only exception being the search views that are in mod/search/views/
default/. As a reminder, the name of the view is related to its filename. The input/
plaintext view is equivalent to the file views/default/input/plaintext.php (as
long as it is not overridden).

Page structure
By using the same views on every page, Elgg makes it simple to maintain a
consistent look and feel across the site. Creating a new theme often starts by styling
or overriding these page views. They are organized into four divisions: page shells,
layouts, elements, and components. They are all found in the /views/default/
page/ directory.

Shells
A page shell defines the overall structure of a web page. The topbar, header, and
footer are all included by the shell. Elgg is distributed with two primary shells.
The default shell is used on user-facing pages and the admin shell is used in the
administrative backend of Elgg.

Views: page/default, page/admin

Developers: If you wanted a few pages to have a very different layout that the rest of
the site, then a good way to accomplish this is by creating a new page shell. The page
shell is selected when calling elgg_view_page().

Themers: If you need to override the default page shell, then remember to include
the "page/elements/foot" view as it is used by Elgg's JavaScript library for loading
JavaScript files.

Appendix B

[313]

Layouts
While the page shell defines the areas that remain fairly constant across the site,
the layout contains the dynamic content. Elgg has three structural layouts: one
column, one sidebar, and two sidebars. The most common of these is the one
sidebar layout with a main content area and a single sidebar that is on the right
in the default theme.

In addition to the structural layouts, Elgg is distributed with admin, content, and
widgets layouts. The content layout is used by all the major content plugins such
as blogs and file. It adds additional structure to the one sidebar layout with action
buttons and tabs (the filter menu). The following is an example of the content layout
on a bookmarks page:

Views: page/layouts/*

Elements
Page elements are views that are typically used a single time when creating a page.
Page shells and layouts use them to define the structure of a page. All of the views
included in this section are in the views/default/page/elements directory except
for the search box, which is in the search plugin.

Views Catalog

[314]

Topbar
The topbar is the tool bar at the top of every screen. The links in the topbar are
managed through the topbar menu, which is discussed later in the appendix.

View: page/elements/topbar

Themers: When overriding this view in your theme, consider whether you want
to continue using the topbar menu, site menu, combine the two menus, or create a
custom set of links. The decision that you make affects the integration of plugins. If
a new plugin expects the topbar menu to exist and you have replaced it with a hard-
coded menu, then you will need to manually update that menu.

Header
The header includes the site title, site navigation, and a search box. The search box
can be removed with a call to elgg_unextend_view(). Content can be added to the
header by extending its view or overriding it.

View: page/elements/header

Sidebar
The sidebar view contains the owner block and the page menu. It can be extended to
add additional content.

Appendix B

[315]

View: page/elements/sidebar

Footer
Many themes override this view to create a custom footer. Links are added to the
footer through the footer menu described later.

View: page/elements/footer

Views Catalog

[316]

Owner block
This view includes a profile photo of a person or group along with content links. It
appears at the top of the sidebar in the default theme on some content pages.

View: page/elements/owner_block

Developers: Links are added to the owner block by using the 'register',
'menu:owner_block' plugin hook.

Status messages
When a user performs an action (logging in, posting a comment), the next web
page includes a status message at the top of the page that disappears after some
time period.

View: page/elements/messages

Developers: The messages are queued by the functions system_message() and
register_error().

Themers: Each message is an item in a list. The list has a class of .elgg-system-
messages and the item's .elgg-message. An additional class on the item is used
to distinguish between success and error messages (.elgg-state-success and
.elgg-state-error).

Appendix B

[317]

Comments
The comments view provides a list of comments and an optional form for adding a
new comment.

Views: page/elements/comments, annotation/generic_comment

Developers: Comments can be added to page through the convenience function
elgg_view_comments().

Search box
The search bar view is in the search plugin. It is added to the header by extending
the page/element/header view.

View: search/search_box

Themers: The Submit button is hidden in the default theme using CSS.

Views Catalog

[318]

Components
Just as software patterns exist, there are visual patterns found in website designs.
Elgg has abstracted these patterns as reusable views paired with CSS markup. The
view creates the HTML structure for a pattern. The CSS is divided between a base
class that captures the shared styling and extension classes that describe the unique
aspects of a particular instantiation of the pattern.

As an example, consider the module pattern which consists of a box with header
and body:

<div class="elgg-module elgg-module-featured">
 <div class="elgg-head">
 <h3>My Module</h3>
 </div>
 <div class="elgg-body">
 My content
 </div>
</div>

The base CSS class is .elgg-module and .elgg-module-features is the extension.
The entire look and feel of the module can be changed by changing the extension
class. This approach to HTML and CSS encourages reuse of markup leading to
consistent HTML and smaller CSS files.

The implementation of these components was inspired by the Object Oriented CSS
Framework created by Nicole Sullivan. There is a description of the approach behind
this framework in Chapter 9 of this book.

Gallery
The gallery pattern is popular on photo and e-commerce sites. It can be used
interchangeably with the list pattern. The file plugin uses this view for displaying
photos in a gallery.

Appendix B

[319]

View: page/components/gallery

Developers: The gallery view requires fixed width content.

Themers: An inline-block approach is used on the unordered list to work around
height differences in the list items. For more information on this, read http://blog.
mozilla.com/webdev/2009/02/20/cross-browser-inline-block/.

Image block
The image block pattern appears on almost every web page in Elgg. It consists of an
image on one side and a body of text on the other. The image is usually a user avatar
or content icon. The image may appear on the left, right, or both sides of the body.

View: page/components/image_block

Developers: elgg_view_image_block() is a convenience function for rendering an
image block.

Themers: The body of the image block uses a space-filling div using this technique:
http://www.stubbornella.org/content/2010/12/09/the-hacktastic-zoom-
fix/.

List
Lists appear often in Elgg. Activity streams, content lists, and comments all use the
list component.

http://blog.mozilla.com/webdev/2009/02/20/cross-browser-inline-block/
http://blog.mozilla.com/webdev/2009/02/20/cross-browser-inline-block/
http://www.stubbornella.org/content/2010/12/09/the-hacktastic-zoom-fix/
http://www.stubbornella.org/content/2010/12/09/the-hacktastic-zoom-fix/

Views Catalog

[320]

View: page/components/list

Developers: It is rare that this view is used directly in a plugin. Instead, the view is
called by the many list convenience functions provided by Elgg such as elgg_list_
entities().

Themers: The list view, unsurprisingly, uses an HTML list element to structure the
content. The base CSS class on the unordered list is .elgg-list, with each item
having a class of .elgg-item.

Module
As already mentioned, a module consists of a box with a header and body. The
module view also supports an optional footer.

View: page/components/module

Developers: elgg_view_module() is a convenience function for rendering a module.

Themers: The module does not support adding classes to the header, body, or footer.
Instead, styling is accomplished through the extension classes on the module box, as
follows:

.elgg-module-feature > .elgg-head {
 border: 1px solid #4690D6;
}

Appendix B

[321]

Navigation
Elgg provides several types of navigation views. Themes may style some or all of
these elements depending on how different the theme is from Elgg's default theme.

Breadcrumbs
The breadcrumb view is used by plugins to indicate location in a page hierarchy. It
works as a stack and plugin authors can add elements to the breadcrumbs by using
elgg_push_breadcrumb().

View: navigation/breadcrumbs

Pagination
This view provides paged navigation of content listings (blogs, files, search results). It
is included automatically on the listing pages created with the elgg_list* functions.

View: navigation/pagination

Menus
Elgg has more than 10 different menus that it natively supports (plugins can create
additional menus). The menus all use an unordered list for HTML structure. The
CSS classes are based on the menu name. Menus have a base CSS class, .elgg-menu,
which is extended based on the menu name. For example, the CSS class for the site
menu is .elgg-menu-site. Each section of a menu has its own class just as each
individual menu item has a class. Finally, there are classes for hierarchical menus
(.elgg-menu-parent and .elgg-menu-child). These classes make it easy to style
and animate the menus without changing the HTML markup.

For information on adding or removing menu items, read the documentation
included, engine/lib/navigation.php and the series of blog posts on the menu
system published at http://blog.elgg.org/pg/search/?q=menu&search_
type=tags.

http://blog.elgg.org/pg/search/?q=menu&search_type=tags
http://blog.elgg.org/pg/search/?q=menu&search_type=tags

Views Catalog

[322]

Topbar menu
This menu has two sections ("default" and "alt").

View: navigation/menu/default (used by most menus)

Site menu
This menu is available on every page. To limit the width of the menu, Elgg registers
a function, elgg_site_menu_setup(), to process its menu items before the menu is
rendered. This function creates a "default" section and a "more" section as seen in
the following screenshot:

View: navigation/menu/site

Developers: To move this menu, remove it from the header by overriding that view
and then insert it in a different location.

Page menu
The page menu appears in the sidebar in the default theme. It has different menu
items in different parts of the site because it uses context to determine what to
display. The primary context of a web page is generally the first segment in its URL
(http://elgg.org/blog/all has a context of "blog").

View: navigation/menu/page

http://elgg.org/blog/all

Appendix B

[323]

Footer menu
This menu is very similar to the topbar menu in that it uses the default menu view
and has two sections ("default" and "alt").

View: navigation/menu/default

User hover menu
This is a dynamic menu. This means that its menu items are not registered until just
before it is rendered. It has an "actions" section and an "admin" section.

View: navigation/menu/user_hover

Comments: Do not use elgg_register_menu_item() to add an item to this menu.
Instead, use the 'register', 'menu:user_hover' plugin hook.

Entity menu
The entity menu is used frequently when displaying lists of content, users, or groups.
It gets its name from the fact that all of these are "entities" in Elgg's data model. It
is also a dynamic menu.

View: navigation/menu/default

Developers: Use the 'register', 'menu:entity' plugin hook to add an item to
this menu.

Views Catalog

[324]

Tabs
Tabbed navigation is commonly used for selecting whose content to view.
It is included on the main listing pages for the content plugins such as blogs
or bookmarks.

View: navigation/tabs

Developers: This view does not handle the content of the tab panes, but only the
navigation. Any plugin using it must manage the tab switching (through Ajax,
hidden content or new page loads).

Themers: The tabs use an unordered list. The selected item uses the class .elgg-
state-selected.

Forms
Elgg has views for collecting input from users and for displaying what was collected.
Forms are the most common method for accepting user input. The form body
consists of a set of input views (for textboxes, radio buttons, a submit button, and so
on). It is highly recommended to use the input views for creating forms. This ensures
the HTML markup is consistent across the site.

Generally, the data that was entered by the user will be displayed on the site.
Elgg uses a parallel set of output views. These views add the appropriate
markup for the data being displayed. URLs become hyperlinks, long chunks of
text are automatically formatted in paragraphs, and time stamps are turned into
human-readable date strings.

Input
Input views are primarily used in forms. They include buttons, textboxes, and
checkboxes. Plugin authors are strongly encourages to these elements when building
forms so that the HTML of forms is consistent.

At the top of each view file is a list of parameters that it accepts. All views accept a
name, class, and id. The views also support all the attributes defined by the
W3C standards for input elements. Chapters 8 and 9 provide example usage of the
input views.

Appendix B

[325]

Access
This control is used for selecting the access permissions on content. If access levels
are not passed through the options variable, then it uses the access levels provided
by get_write_access_array(). This function returns all the access levels available
to the current user, including personal access collections.

View: input/access

Buttons
Elgg has two primary button views. The "input/submit" view is used to add submit
buttons to forms. The "input/button" view provides a general view for creating
buttons.

There are CSS classes for creating submit, action, cancel, and delete buttons. In each
case, a base class of .elgg-button is extended by a specific class (such as .elgg-
button-action for an action button).

Views: input/button, input/reset, input/submit

Developers: The CSS classes can also be applied to anchor tags to create buttons
from links.

Checkboxes
This view creates arrays of checkboxes. The labels and values are passed as an
associative array.

View: input/checkboxes

Views Catalog

[326]

Developers: A hidden input field is added in this view. The hidden input has the
same name as the checkbox with a value of 0. If a box is not checked, then 0 is passed
to the action of the form. If at least one box is checked, then the value of the checkbox
is sent. The values of checkboxes are submitted as an array. If a set of checkboxes is
created with the name "mycheckboxes", then the first value is obtained in an action
as follows:

$checkboxes = get_input('mycheckboxes', array());
$first_value = $checkboxes[0];

Date
The view for selecting dates displays a textbox. When a user clicks in the textbox, a
calendar is displayed using JavaScript. When a day is selected using the calendar,
that date is entered into the textbox.

View: input/date

Themers: Elgg uses jQueryUI's date picker. Elgg's default theme includes custom CSS
for the date picker. Themes can modify that CSS or pull CSS from a jQuery theme.

Appendix B

[327]

Drop-down selector
An associative array is used to set the value and label of the elements in this selector.

View: input/dropdown

File upload
The file upload view creates an input field of type file. It uses the web browser's
file chooser to select a single file for upload. The form encoding type must be set to
multipart/form-data to use this input field.

View: input/file

Hidden input
Use this to embed information into a form that should not be displayed. An example
use is storing the identifier of a blog post in the comment form.

View: input/hidden

Views Catalog

[328]

Large textarea
A large textarea element is available through two views: input/longtext and
input/plaintext. The longtext view uses a WYSIWYG editor, if available, while the
plain text view does not. The long text view also includes its own menu that can
be extended.

Views: input/longtext, input/plaintext

Password
Password fields are created with the input/password view.

View: input/password

Radio buttons
This view creates an array of radio buttons with the same options as checkboxes. The
key difference between the two is that only a single option can be selected from a set
of radio buttons, as shown in the following screenshot:

View: input/radio

Appendix B

[329]

Textbox
There are several different textbox input views. They each have a paired output view
that displays the data differently (for example, e-mail addresses turn into mailto
links and tags become hyperlinks).

Views: input/text, input/email, input/location, input/tags, input/url

User pickers
There are two views for selecting users. The input/userpicker view uses an Ajax
callback to display matching users as a name is typed.

The input/friendspicker view displays users alphabetically grouped. The access
collection interface is an example usage of this view.

The friendspicker supports multiple selections and can be used to highlight
previous selections.

Views: input/friendspicker, input/userpicker

Views Catalog

[330]

Output
There is generally a partner output view for every input view. These views assist in
the display of information collected from users.

Date
The date output view accepts either a Unix time stamp or a date string with the
output being a date string.

Views: output/date

E-mail address
The e-mail output view turns an e-mail address into a mailto link.

View: output/email

Link
There are a few reasons to use the link output views provided by Elgg. First, they
determine the full URL for a link from a segment of a URL (pass in 'blog/all'
and the view uses the URL http://example.org/blog/all). Second, the confirm
link view pops up a dialog box to confirm any action the user is about to take such
as deleting a blog post. Third, they can add security tokens to protect users (for
information on this feature, visit http://docs.elgg.org/Secure_forms).

Views: output/url, output/confirmlink

http://example.org/blog/all
http://example.org/blog/all
http://docs.elgg.org/Secure_forms
http://docs.elgg.org/Secure_forms

Appendix B

[331]

Tag cloud
The tag cloud view is called from elgg_view_tagcloud(). This function supports
a wide range of parameters for determining what tags make up the cloud. The view
sets the font size for each tag and includes a "tagcloud/extend" view for adding
content at the bottom of the cloud.

View: output/tagcloud

Tags
The tags view accepts an array of strings and returns a set of links for those tags. It is
commonly used in the major plugins to list the tags attached to the content (such as
tags on a file or a bookmark).

View: output/tags

Text
There are two primary text output views. The "output/longtext" view marks up
the text with HTML to highlight links and format paragraphs. The other text view
displays the text exactly as it was saved.

Views: output/longtext, output/text

The form
Elgg has a convenience function called elgg_view_form() for rendering forms. If
the Elgg action for the form is 'blog/save', then the form body view should be
'forms/blog/save'. In that form body view, the labels and input elements are
assembled. The elgg_view_form() function handles inserting the content into a
form, setting the action, and including Elgg's security features for preventing Cross
Site Request Forgeries (CSRF).

View: input/form

Views Catalog

[332]

Users, groups, and objects
Appendix A, Developer's Quick Start Guide, discusses how users, groups, and objects
(blogs, bookmarks, and files) are all entities in Elgg's data model. When rendering
an entity, it can be done as a summary or as a full representation of the entity. The
summary is used when listing several entities as in the list of blogs as shown in the
following screenshot:

The summary uses the image block component described earlier. On the right is the
entity menu that was mentioned in the menu section of this appendix. This menu has
important information about the entity (such as its access level) and links for acting
on the entity (liking or deleting the entity).

The full view of an entity usually has the summary at the top with its description
plus comments below. Both the brief and full entity renderings occur through the
same view. The name of the view depends on the type and subtype of the entity. If
it is a blog, then the view is "object/blog". A bookmark uses "object/bookmark", a
user "user/default", and a group "group/default".

Views: object/elements/summary, object/*, user/*, group/*

Developers: The function for rendering an entity is elgg_view_entity().

Themers: The class .elgg-output is often used for the main content area when
displaying an entity.

Activity stream
The activity stream, also called the river in Elgg, provides an overview of what is
happening on a site. It uses the list pattern component. Each item is created with the
image block pattern.

Appendix B

[333]

The body of each river item is made up of several views. There is a river menu for
liking and toggling a response box. The summary is the text that describes the activity.
There is also support for a message (an excerpt of text from the original content), an
attachment (such as a thumbnail image), and a response (a comment box).

Views: river/item, river/elements/*

Developers: A plugin calls add_to_river() to include an event in the activity stream.
The name of the view that creates the summary is passed into that function and
usually based on the content type and the action. For example, posting a blog results in
the view "river/object/blog/create" being used as set by the blog/save action.

Likes
The like system was added in Elgg 1.8 and is similar to Facebook's like button. This
capability is provided by the likes plugin distributed with Elgg.

Like this
The button for liking something is a thumbs-up icon. It changes color based on
whether the content has been liked by the viewer.

View: likes/button

List users
If at least one person has liked a piece of content, then a count of the likes is
displayed next to the thumbs-up icon. Clicking on the count triggers a pop-up with a
list of users that liked the content.

Views Catalog

[334]

Views: likes/count, annotation/likes

Themers: The thumbs-up icon is in Elgg's sprite. The icons have a base class of
.elgg-icon that sets the background image and a class extension of .elgg-icon-
<icon name> that sets the offset into the image.

Widgets
Elgg provides a widget framework including a layout with support for adding new
widgets and views for rendering individual widgets. It is heavily dependent on the
widget JavaScript library included with Elgg (based on jQuery UI).

The widget layout has a configurable number of columns. It also includes a button
for toggling the display of a panel with the available widgets for that page.

An individual widget uses the module pattern. The body of the widget can include
both the content of the widget and a settings box that can be toggled.

Views: page/layout/widgets, object/widget

Developers: Lesson 5 in Chapter 8 describes the process of creating a new widget.

Appendix B

[335]

Administration
The administrative backend of Elgg has a separate theme, giving it a consistent look
and feel regardless of what is changing with the theme for the rest of the site. The
views are found in the admin directory of the view tree.

Views: admin/*, page/admin, page/layout/admin

Developers: Adding a new page to the admin area requires two steps:

1.	 Creating a view under the admin directory (for example, "admin/
configure/backup").

2.	 Registering a link (http://elgg.org/admin/configure/backup) to the
page menu based on the view name using the function elgg_register_
admin_menu_item().

Elgg handles creating the page and placing the content of that view into the layout.

Themers: The admin theme uses a fluid layout and could be used as a model for
themes that do the same with the user-facing portion of the site.

http://elgg.org/admin/configure/backup

Views Catalog

[336]

Summary
The views catalog guided you through the use of many of the views provided by
Elgg. This concludes this appendix and the book. Thank you for reading it and good
luck with your Elgg endeavors.

Index
Symbols
$vars[] associative array 297
.elgg-module-aside class 175
.elgg-module class 175, 318
.elgg-module-features class 318
.htaccess file 263

A
abstractions, common visual patterns

creating 236
access input view 325
actions

about 290
core action handlers code location 290
plugin action handlers code location 290

activity and notifications, social features 8
activity stream

about 47, 304, 332
developers 333
fucntions code location 304
views 333

add_translation() 149
admin account

creating 33
administration

about 335
developers 335
themers 335
views 335

administration area, Elgg
about 56
configure section 57
custom profile fields 59
dashboard 57

default widgets 59
plugins, activating 58
reported content 61
site categories 58
site pages 60

administration, Event calendar plugin 127
administration, Tidypics 123
advanced performance tuning

caching 281
multiple servers 282
resources 282

Akismet
URL 272

AllowOverride 264
Apache 9, 263
ApacheBench

URL 280
Apache wiki

URL 264
apc_sma_info() 280
API Reference

about 135
URL 135, 182

authentication 306
avatar 42, 43

B
benchmarking

about 278
monitoring and data collection 278
stress testing 279

blog
URL 20

blogging plugin 17

[338]

blog post
creating 67, 68
files, embedding 68, 69
photos, embedding 68, 69
publishing 69

blogs
about 48, 66
blog post, creating 49, 67, 68
blog post, publishing 69
blog posts list 70, 71
commenting 72
customizations 73
features 66
RSS feeds 71
search box 70
searching 69
use cases 73
viewing 69
widget settings 72

bookmarklet 76
bookmarks

about 49, 74
adding 74, 75
bookmarklet 76
features 74
use cases 78
viewing 77, 78

breadcrumbs 321
browser development tools 159
bugs, reporting

about 283, 284
problem, reproducing 283

bug tracker
about 135
URL 135

bundled plugins 14
buttons input view 325
buttons module 231

C
caching

about 281, 306
browser caching 281
Elgg's query cache 281
memcache 282
MySQL's query cache 282

PHP opcode caching 281
proxy cache 281
simple cache 281

caching, view system 235
Cacti

URL 279
captcha 271
case studies, Elgg

corporate intranet 17
educational collaboration 18
Niche social network 16

checkboxes input view 325
Chrome 121
Class Table Inheritance pattern 294
cloud hosting 262
code

editing 136
code location

Apache rewrite rules 290
boot script 292
core action handlers 290
core page handlers 291
core views 299
function-based page handling example 291
functions 299
library fucntions 290
plugin action handlers 290
primary handlers 290
script-based page handling example 291

coding standards and best practices
about 135
URL 135

coming_soon plugin
CSS, adding 203, 204
exercise 206
index page, creating 199-201
plugin setting, adding 204-206
plugin structure, creating 198
views, defining 201, 202

commenting, Elgg engine 12
comments 317
commercial theme designer

evaluating 120
commercial themes 120
communication, social features 9
community forums

about 135

[339]

URL 135
community plugin repository

browsing, for plugins 115
URL 122

community plugins
about 122
Event calendar 126
Profile Manager plugin 128
Tidypics 122

components
about 318
gallery pattern 318
image block pattern 319
lists 319
module 320

components, default theme
CSS 231
graphics 233
HTML 229
JavaScript 232

components module 231
configuration 306
content, adding to page

example 174
problem 173
solution 173
tips 176, 177
view, searching for extending 175

content, Hello, World plugin
organizing, into greeting view 151
organizing, into stats view 153
organizing, into views 150
personalizing 149, 150

content sharing, social features 8
content sharing tools, Elgg

blogs 48, 66
bookmarks 49, 74
file 50, 79
groups 50
messages 53
pages 52
The Wire 53, 83

controllers, MVC pattern
about 287
Front Controller pattern 287

core language file code location 305
core module 231

corporate intranet case study
about 17
LDAP plugin 18
MediaWiki integration plugin 18
profile manager plugin 18
site, building 17, 18
site, deploying 18
site, designing 17, 18

Cron 267
crontab 267
Cross Site Request Forgeries (CSRF) 331
CSS

about 134, 231, 232
adding 191, 192
adding, to theming system 238
core views 231
theme modules 231

css/elgg view 232, 243
CSS framework

about 236
objects, customizing through extension

classes 237
visual patterns abstractions, creating 236

CSS, mobile theme 253, 255
CSS objects

customizing, through extension classes 237
customizations, blogs 73
customizations, file 83
customizations, groups

communities, renaming 101
group administrators 101
group categories 100
group moderation 101
group widgets 100

customizations, message board
guest book 108
wall-to-wall 108

customizations, messages tool
limit to friends 106
send email to groups 106

customizations, pages 104
customizations, The Wire 90
custom logo plugin

exercise 173
header, styling 172, 173
logo view, editing 170, 172
plugin structure, creating 170

[340]

custom plugins
about 116
building 15

custom profile fields 59
custom themes 120
custom widget

creating 181
example 181
problem 181
solution 181

D
daily tasks

about 273
community management 274
feedback, responding 273
reported content, reviewing 273
user registration, monitoring 273

database 295
data, collecting/storing

example 207
overview 208
problem 207
solution 207

data collection
about 278
tools 279

data model
about 292
code location 296
entities 292
extenders 294, 295
relationships 294
retrieval functions 296

date input view
about 326
input/date 326

date output view 330
debugging

about 155, 306
browser development tools 159-161
Elgg developer tools 161
Firebug 159-161
log files 156
PHP, through IDE 158
screen 157

dedicated server 262
default layout 244
default page shell 229
default theme

about 228
components 228

default viewtype 235
default widgets 59
developer resources 20
Developer Settings page

caching, disabling 137
display of fatal errors, enabling 137
trace level, setting to warning 137

Developers plugin 137
development environment

code, editing 136
setting up 136
site, configuring 137

diagnostics plugin 308
discussion forum, groups

about 96
topic, adding 97

display_error setting 266
DomainKeys 268
drop-down selector input view

about 327
input/dropdown 327

Drupal 9

E
Eclipse

URL 136
educational collaboration case study 19

blog plugin 19
bookmarks plugin 19
groups plugin 19
pages plugin 19
profile plugin 19
site, building 19
site, deploying 19
site, designing 19
user importer plugin 19
wire plugin 19

elements
about 313
comments 317

[341]

footer 315
header 314
owner block 316
search box 317
sidebar 314
status messages 316
topbar 314

Elgg
about 9, 286
bundled plugins 14
case studies 15
configuing 32, 33
configuration, using 286
content sharing tools 66
convention, using 286
custom plugins, building 15
debugging 155
extensibility 286
features 9, 286
groups tool 92
Hello, World plugin 138
in production environment 257
installing 23
key components 155
language system 164
message board 106
messages tool 104
Model-View-Controller pattern 286
object-oriented 286
pages tool 101
plugin administration 109
procedural 286
template engine 287
theme 15
themes 118, 119
theming system 228
third-party plugins 14
URL 285
warnings 20

ElggAnnotation class 294
Elgg blog

about 135
URL 135, 147

elgg-body class 244
Elgg cheatsheet

URL 135

Elgg community
about 20
URL 20, 277, 301

Elgg Developer Resources
about 135
API Reference 135
Bug tracker 135
coding standards and best practices 135
community forums 135
Elgg blog 135
Google Group for developers 135
IRC channel 135
Wiki documentation 135

Elgg developer tools
about 161
inspect tool 161
inspect tool, using 161
theming sandbox 162

Elgg development terms
authentication 306
caching 306
configuration 306
debugging 306
JavaScript 307
logging 306
menus 307
private settings 307
search 307
security 308
session handling 308
unit tests 308
web services 308
widgets 308

elgg_echo() function 177, 180, 148
Elgg engine

about 10
commenting 12
feeds 13
internationalization 13
privacy controls 11
tagging 12
theming 11
user management 11
web services 14
widgets 12

ElggEntity 292
Elgg events 300

[342]

ElggExtender class 294
elgg_get_all_plugin_user_settings() 189, 190
elgg_get_entities() functions

about 153, 296
elgg_get_entities_from_annotations() 296
elgg_get_entities_from_metadata() 296
elgg_get_entities_from_relationship() 296

Elgg Github account
about 135
URL 135

ElggGroup 292
Elgg installation

installer, running 29
prerequisites 23
server, preparing 23

Elgg installer
admin account, creating 33
database, loading 31
Elgg, configuing 32, 33
running 29, 30
troubleshooting, installing 31

Elgg IRC channel
URL 20

elgg_load_css() function 238
elgg_load_js() function 194, 238
ElggMenuItem object 145, 147, 239
ElggMetadata class 294
elgg-module-aside class 247
elgg-module-featured class 237
elgg-module-popup class 237
elgg_normalize_url() function 195
ElggObject 292
elgg-page-body div 230
elgg.provide() function 232
elgg_push_breadcrumb() 321
elgg_register_css() function 238
elgg_register_event_handler() function 140
elgg.register_hook_handler 233
elgg_register_js() function 194
elgg_register_menu_item() function 147,

239
elgg_register_page_handler() function

adding 142
elgg_register_widget_type() 182
ElggRelationship class 294
Elgg resources

about 20

developer resources 20
Elgg community 20
Elgg wiki 20

elgg_send_email() 180
Elgg site

about 37
activity stream 47
administration area 56
authentication 62
avatars 40
content area 38
content sharing tools 48
customizing 61
footer 39
friends, adding 45
friendship model 62
header 38
help and support 63
moving 277
roles 62
sidebar 39
testing 38, 39, 274
toolbar 38
upgrading 276
user profiles 40
user registration 62
user settings 54
users, registering 39
widgets 62

ElggSite 292
Elgg site, testing

about 274
production site, mirroring 274
test plan 275

elgg space 232
Elgg theming system

about 228
CSS, adding 238
CSS framework 236
default theme 228
external JavaScript, adding 238
menu system 238
view system 233

ElggUser 292
ElggUser class 306
elgg_view() 297
elgg_view_entity_icon() 150

[343]

elgg_view_form() function 331
elgg_view function 176
elgg_view_image_block() 319
elgg_view_layout() function 143, 200, 298
elgg_view_menu() function 240, 249
elgg_view_module() 175, 320
elgg_view_page() function 143, 298, 312
Elgg wiki

about 20
URL 20, 118, 264

E-mail 268
e-mail output view

about 330
output/email 330

embed plugin 68
entities

about 292
access 293
container 293
database 294
GUID 293
owner 293
type and subtype attributes 293

Entity Attribute Value model 295
entity menu

about 323
developers 323
view 323

error_log setting 266
error_reporting 266
Event calendar plugin

about 126
administration 127
features 127
group calendar 128
plugin profile 127
site calendar 127

events 155
event system 178
external JavaScript

adding, to theming system 238

F
Facebook 7
favorite_color 294
feedback 63

feeds, Elgg engine 13
file

about 50, 79
customizations 83
features 79
uploading 79, 80
use cases 83
viewing 80-82

file sharing plugin 17
file upload view

about 327
input/file 327

Filezilla
URL 25

filtering, plugin administration 109
Firebug

about 159
URL 159

Firefox 121
Flickr 7
footer 315
footer menu

about 323
view 323

form directory 231
forms

about 324
elgg_view_form() 331
input views 324
output view 330

forms module 231
framework booting

about 291, 292
boot script code location 292

Freenode
URL 20

free open source software (FOSS) 9
free themes 119, 120
friends

about 45, 46
adding 45, 46

friendship model
confirmation 62
friends, renaming 62
reciprocal friendships 62

friendspicker 329
Front Controller pattern 287

[344]

G
gallery pattern

about 318
developers 319
theme 319
view 319

Github
URL 20, 301

Google group
URL 20

Google Group for developers
about 135
URL 135

graphics 233
greeting view 151-153
grid module 231
group blog 99
group calendar, Event calendar plugin 128
group membership

about 95
e-mail invitations 95
Join group button 96
Request membership button 96

group pages 99
groups

about 50, 332
closed group 93
searching 99, 100

groups plugin 17
about 92
customizations 100
discussion forum 96, 98
features 92
group, creating 92
group profile page 94
groups, searching 99
group tools 98
membership 95
use cases 100

groups, social features 8
groups tool 91, 92
group tools 98, 99
GUI-based tools 280
guidelines

server selection 260

H
handlers 288
header

about 314
styling 172, 173

hello_page_handler() function
adding 142

hello_world_init() function 141
Hello, World plugin

about 138
activating 140
content, organizing into greeting view 151,

152
content, organizing into stats view 153, 154
content, organizing into views 150
content, personalizing 149, 150
init/system event, registering 140
language support 148
manifest.xml file, plugin skeleton 139
new route, adding 141
page handler, extending 145, 146
plugin directory, creating 138
plugin skeleton, setting up 138
review 155
routing, updating 143, 144
sidebar menu, adding 146, 147
site menu, adding 144, 145
web page, creating 142, 143

helpers module 231
help pages 63
help plugin

administration page, adding 212
categories, creating 211
CSS, adding 222
exercise 225
form body, creating 213-215
help category page, creating 217-219
help object view, creating 219, 220
help sidebar, adding 221, 222
main help page, completing 223, 224
main help page, creating 209, 210
plugin structure, creating 208
save action, creating 215-217

hidden input view
about 327
input/hidden 327

[345]

history link 103, 107
honeypot captchas 272
hosting company selection 262
hosting options, server selection

cloud hosting 262
dedicated server 262
hosting company selection 262
shared hosting 261
VPS 261

HTML 134
about 229
characteristics 229
flexibility, increasing 230
page shell 229
structure 229
view directories 231

htmlawed plugin 308
httperf

URL 280
human spammers 272

I
icons module 231
IDE

about 136
features 136

IDE features
auto formatting 136
code completion 136
code navigation 136
debugging 136
documentation hints 136
syntax checking 136

image block pattern
about 319
developers 319
themers 319
view 319

inbox, messages tool 104
init/system event

about 141
registering 140

input directory 231
input/friendspicker view 329
input views

about 324

access 325
buttons 325
checkboxes 325
date 326
drop-down selector 327
file upload view 327
hidden input 327
large textarea element 328
password fields 328
radio buttons 328
textbox input views 329
user pickers 329

inspect tool
about 161
using 161

installation
Elgg 23
plugins 116
themes 121

Integrated Development Environment. See
IDE

internationalization 13, 305
Internet Explorer (IE) 121
Internet Information Services (IIS) 263
IP blacklist 272
IRC channel 135

J
JavaScript 134, 232, 233, 307
JavaScript, adding

example 193
problem 193
solution 193

Jmeter
URL 280

js/initialize_elgg view 233
js/lightbox view 238

K
Kaltura collaborative video plugin 17
Keetup development team

URL 135
key components, Elgg

events 155
multi-lingual support 155

[346]

page handling 155
views 155

L
LAMP stack 9
language strings

overriding 166
searching 166

language support, Hello, World plugin 148
large textarea element 328
latency 279
layout 298
layout, mobile theme 253
layout module 231
layout, theme

about 244
default layout 244
page body layout 244, 245
page footer 245
page header 244

layout view 230
LDAP plugin 17, 18
lighttpd 263
like system

about 333
like this button 333
themers 334
users, listing 333
views 334

link output views
about 330
output/confirmlink 330
output/url 330

Linux 9
lists

about 319
developers 320
themers 320
view 320

localization 305
log

debugging 156
logbrowser 306
logging 306
logo view

editing 170, 172

logrotate 306
log rotation 270
long text view

input/longtext 328
input/plaintext 328

M
Mail Transfer Agent (MTA) 268
Make featured link 100
manifest.xml file 139
MediaWiki 17
MediaWiki integration plugin 18
menu item

registering 239
menus

about 307, 321
entity menu 323
footer menu 323
page menu 322
rendering 240
site menu 322
topbar menu 322
user hover menu 323

menu system
about 238
menu item, registering 239
menu, rendering 240

message board
about 106
customizations 108
history link 107
reply link 107
View all link 107

messages 53
messages plugin 304
messages tool

about 104
composing 105, 106
customizations 106
inbox 104

misc module 231
mobile CSS view 255
mobile theme

creating 251
CSS 253, 255
layout 253

[347]

plugin structure 252, 253
mobile_theme_set_viewtype() function 253
mobile viewtype 235
model, MVC pattern 288
Model-View-Controller (MVC) pattern,

Elgg
about 286, 287
controllers 287
model 288
overview 287
views 289

mod_rewrite 264
module

about 320
developers 320
themers 320
view 320

more info link 111
MP3 player plugin 17
multi-lingual support 155
multiple servers 282
Munin 279
MySQL 9, 266
MySQL database 28
MySQL reference

URL 266

N
navigation

about 321
breadcrumbs 321
menus 321
pagination 321
tabs 324

navigational module 231
navigation directory 231
navigation/menu/site view

overriding 249
NetBeans

URL 136
new route, Hello, World plugin

adding 141
new_user_signup_notify() function 179
new_user_signup plugin

exercise 180
plugin structure, creating 179

nginx 263
Niche social network case study

about 16
plugins 17
site, building 16
site, deploying 16, 17
site, designing 16

Ning 9
notifications

about 304
fucntions code location 304

notification settings 55, 56

O
OAuth API plugin 86
object directory 231
Object Oriented CSS Framework 318
objects 332
one_column layout 144
one_sidebar layout 144
OOCSS framework

URL 236
opcode cache 280
Open Web Analytics 273
output directory 231
output views

date output view 330
e-mail output view 330
link 330
tag cloud view 331
tags view 331
text output views 331

overview, MVC pattern 287

P
page body layout 244
page elements 230, 313
page footer, layout 245
page handler, Hello, World plugin

extending 145, 146
page handlers

about 141, 291
core page handlers code location 291
example of function-based page handling

code location 291

[348]

example of script-based page handling code
location 291

page handling 155
page header, layout 244
page layouts 313
page/layouts/one_sidebar view 253
page menu

about 322
view 322

pages
about 52
creating 102
customizations 104
use cases 104
viewing 103

page section, modifying
about 167
example 168
problem 167
solution 168
view, searching for overriding 168, 169

page shell
about 229, 298, 312
developers 312
themers 312
views 312

pages plugin
about 101
features 101

pages tool 101
page structure

about 312
components 318
elements 313
layouts 313
shells 312

page views 312
pagination 321
password fields 328
performance

advanced performance scaling 281
advanced performance tuning 281
benchmarking 278
easy performance gains 280

performance considerations, server
about 258
resources, competing for 258, 259

usage patterns 259
photos

tagging, on Tidypics 126
uploading, on Tidypics 124
viewing, on Tidypics 124, 125

photos and files
embedding, in blog post 68, 69

PHP
about 9, 134, 264-266
debugging, through IDE 158
working, with web server 134

php.ini file 265
PHP logging 266
phpMyAdmin tool 28
PHP parameters

URL 265
PHP site

URL 266
Piwik 273
Plain Old Semantic HTML or POSH 229
pluggable authentication modules (PAM)

306
plugin administration

about 109
filtering 109
plugin dependencies 110-112
plugin settings 113
sorting 110

plugin code
URL 133

plugin dependencies 110-112
plugin developers 311
plugin hooks

URL 197
using 197

plugin hooks 300
plugin hooks usage

example 197
problem 197
solution 197

plugin language files code location 305
plugin profile, Event calendar plugin 127
plugin profile, Profile Manager plugin 128
plugin profile, Tidypics 122
plugins

about 301
activating 58

[349]

conventions 302, 303
custom plugins 116
evaluating, before downloading 115
initializing 302
installing 116
plugin order 302
searching 113, 115
searching, in community plugin repository

115
plugin settings 113
plugin settings, Profile Manager plugin 130
plugins, evaluating before downloading

comments, reading 115
history, checking 116
plugin overview 115

plugins installation
about 116
activating 117
code, copying 117
configuring 117
testing, on test server 117
troubleshooting 118

plugin skeleton, Hello, World plugin
manifest.xml file 139
plugin directory, creating 138
setting up 138
start script 139

plugin structure, custom logo
creating 170

plugin structure, mobile theme 252, 253
plugin structure, new_user_signup plugin

creating 179
plugin structure, sidebar_tip plugin

creating 175
plugin structure, theme 242, 243
plugin structure, tooltips plugin

creating 194
plugin structure, user_defined_toolbar

plugin
creating 187

plugin structure, welcome_widget plugin
creating 182

Postfix 268
primary handlers

location 288
primary page shell 229
privacy controls, Elgg engine 11

private settings 307
production environment, Elgg

bugs, reporting 283
performance 278
server, configuring 263
server, selecting 258
site, managing 268
site, moving 277
site, testing 274
site, upgrading 276

profile fields, Profile Manager plugin
adding 129
configuring 130

profile icon 42
Profile Manager plugin

about 18, 128
features 129
plugin profile 128
plugin settings 130
profile fields, adding 129
profile fields, configuring 130

profiles
about 40
avatar 42
information, adding 41, 42
profile widgets 43, 44

profiles, social features 8
profile widgets 43, 44

R
radio buttons input view

about 328
input/radio 328

relationships, social features 8
reply link 107
reported content 61
requirements, Elgg

checking 24
reset module 231
resources 282, 283
resources, server selection

competing for 258, 259
disk space 258
file I/O 258
memory 258
network bandwidth 258

[350]

processing power 258
REST/RPC hybrid web services API 308
river directory 231
roles 62
routing

about 290
Apache rewrite rules code location 290
library functions code location 290
primary handlers code location 290

routing, Hello, World plugin
updating 143, 144

RRDtool 279
RSS 71
RSS feed plugin 17
RSS feeds, blogs 71
rss viewtype 235

S
Safari 121
screen

debugging 157
search 307
search box

about 317
moving 246, 247

search box, blogs 70
search/css view 247
searching through files 136
security 308
SenderID 268
Sender Policy Framework (SPF) 268
Sendmail 268
server

configuring 27, 263
selecting 258

server categories
home computer 24
local server 23
web hosting provider 24

server configuration
about 263
Apache 263
Cron 267
data directory, creating 27
data directory permissions, setting 27
E-mail 268

engine directory permissions, setting 27
MySQL 266
PHP 264
root, setting 27

server preparation, Elgg installation
database, creating 28
files, extracting 25
files, moving to web server directory 25-27
latest version, downloading 24
preparing 23
requirements, checking 24
server, configuring 27

server selection
guidelines 260
hosting options 260
performance considerations 258

session handling 308
shared hosting 261
Sharepoint 17
sidebar 314
sidebar menu, Hello, World plugin

adding 146
sidebar module

styling 247, 248
sidebar_tip plugin

exercise 177
plugin structure, creating 175
view, building 175, 176

Siege
URL 280

site
configuring 137
managing 268

site backup
code 269
database 269
files 270
restoring 270
server configuration 270

site calendar, Event calendar plugin 127
site categories 58
site management

about 268
backup 269
daily tasks 273
log rotation 270
spam 271

[351]

web analytics 273
site menu

about 322
moving, to topbar 248-251
view 322

site menu, Hello, World plugin
adding 144, 145

site pages 60, 61
social features

about 8
activity and notifications 8
communication 9
content sharing 8
groups 8
profiles 8
relationships 8

sorting, plugin administration 110
spam

about 271
registration 271, 272
spammers, detecting 272

spambots 272
Spam Login Filter

URL 272
spammers

detecting 272
special views

about 299
plugin settings 299
user settings 299
widget content 299
widget settings 299

sprintf() 150
start.php, Hello, World plugin 139
stats view 153, 154
status messages 316
Stop Forum Spam service 272
stress testing

about 279
data 279
tools 280

structural layouts 313
subtype attribute 293
syntax highlighting 136

T
tabbed navigation

about 324
developers 324
themers 324
view 324

tag cloud view
about 331
output/tagcloud 331
tagcloud/extend 331

tagging, Elgg engine 12
tags view 331
template engine

using 287
template language, view system 234
test plan, blog upgrade 275
textbox input views

about 329
input/email 329
input/location 329
input/tags 329
input/text 329
input/url 329
types 329

text output views
about 331
output/longtext 331
output/text 331

Textpad++ 136
TextWrangler 136
theme, building

about 241
layout 244
plugin structure 242
search box, moving 246, 247
sidebar module, styling 247, 248
site menu, moving to topbar 248-251

theme modules, CSS
buttons 231
components 231
core 231
forms 231
grid 231

[352]

helpers 231
icons 231
layout 231
misc 231
modules 231
navigational 231
reset 231
typography 231

themers 311, 314
themes

about 15, 118, 119, 303
commercial theme 120
CSS views code location 303
custom themes 120
free themes 119, 120
installing 119, 121
searching 119

theming
about 228
comparing, in WordPress to Elgg 240

theming, Elgg engine 11
theming sandbox 162
theming system, Elgg 228
The Wire

about 53, 83
customizations 90
features 83
posting 84
Twitter integration 86, 88
use cases 89
viewing 85, 86

third-party plugins 14
throughput 279
Tidypics

about 17, 122
administration 123
features 122
photos, tagging 126
photos, uploading 124
photos, viewing 124, 125
plugin profile 122
slideshow link 125

TinyMCE plugin 66
toolbar view

creating 190
tools page 55
tools, view system 235

tooltips plugin
CSS, adding 195
exercise 196
JavaScript file, loading 194
JavaScript initialization 195
plugin structure, creating 194

topbar 314
topbar menu 322
Trac

URL 20
troubleshooting

plugins 118
Twitter

about 8
activating 86
integrating, with The Wire 86, 88

two_sidebar layout 144
type attribute 293
typography module 231

U
unit tests 308
upgrade, Elgg site 276
URL shortener plugin 90
usage patterns, server selection 259
use cases, bookmarks

literature or vendor search 78
students bookmarking resources for reports

78
use cases, file

Maps and trail guides for hiking group 83
sharing code snippets and scripts 83

use cases, pages
group-based FAQ 104
help documentation 104

use cases, The Wire
answering questions 89
live tweeting an event 89

user_defined_toolbar plugin
CSS, adding 191, 192
exercise 192
plugin structure, creating 187
toolbar view, adding 190
user settings, adding 188, 189

user hover menu
about 323

[353]

comments 323
view 323

user importer plugin 19
user management, Elgg engine 11
user pickers input view

about 329
input/friendspicker 329
input/userpicker 329

user registration and authentication
external authentication 62
registration fields, adding 62
users, importing 62

users
about 332
developers 332
registering, on Elgg site 39
themers 332
views 332

user settings
about 54
notification settings 55, 56
tools page 55
Your settings page 54

users options, adding from plugin
example 187
problem 186
solution 187

uses cases, blogs
book reports 73
communication tool for managers 73
site news 73

uses cases, groups
community of practice 100
group project 100
premium content 100

V
View all link 107
view directories

forms 231
input 231
navigation 231
object 231
output 231
river 231

views
about 155, 233, 289, 297
building 175, 176
displaying 233
extending 234, 299
layout 298
output 233
overriding 234, 299
page shells 298
searching, for extending 175
searching, for overriding 168, 169
special views 299
using 311, 312
view templates 297
view type 298

views/default directory 151
views directories 301
views, MVC pattern 289
view system

about 233
caching 235
template language 234
tools 235
view 233
view, extending 234
view, overriding 234
viewtype 235

view templates 297
view type 298
viewtype

about 235
default viewtype 235
mobile viewtype 235
rss viewtype 235

Virtual Private Server. See VPS
VPS 261, 281

W
WeatherBug

URL 186
web analytics 273
web page, Hello, World plugin

creating 142, 143
web services 308
web services, Elgg engine 14

[354]

welcome_widget plugin
exercise 186
plugin structure, creating 182
widget content view, creating 184, 185
widget edit view, creating 182, 183

when X happens, event system
event, searching 178, 179
example 178
function, writing 180
problem 178
solution 178

widgets
about 12, 308, 334
developers 334
layout, fixing 62
new widget, pushing 62
views 334

Wiki documentation
about 135
URL 135

wording, modifying
about 164
example 164
language strings, overriding 166
language strings, searching 166
problem 164

solution 164
wording plugin

exercise 167
plugin structure, creating 165

WordPress 9, 240
WordPress community 120
WordPress to Elgg

theming, comparing 240
world.php file 142
WURFL

URL 252
WYSIWYG 66

X
XAMPP 28

Y
Yelp 7
Your settings page 54
YouTube 7

Z
zaudio plugin 17
ZenOSS 279

Thank you for buying
Elgg 1.8 Social Networking

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PHP 5 E-commerce Development
ISBN: 978-1-847199-64-5 Paperback: 356 pages

Create a flexible framework in PHP for a powerful
e-commerce solution

1.	 Build a flexible e-commerce framework using
PHP, which can be extended and modified for
the purposes of any e-commerce site

2.	 Enable customer retention and more business
by creating rich user experiences

3.	 Develop a suitable structure for your
framework and create a registry to store core
objects

4.	 Promote your e-commerce site using techniques
with APIs such as Google Products or Amazon
web services, SEO, marketing, and customer
satisfaction

PHP 5 CMS Framework
Development - Second Edition
ISBN: 978-1-84951-134-6 Paperback: 416 pages

Expert insight and practical guidance to create an
efficient, flexible, and robust web-oriented PHP 5
framework

1.	 Learn about the design choices involved in
the creation of advanced web oriented PHP
systems

2.	 Build an infrastructure for web applications
that provides high functionality while avoiding
pre-empting styling choices

3.	 Implement solid mechanisms for common
features such as menus, presentation services,
user management, and more

Please check www.PacktPub.com for information on our titles

Drupal 7 Social Networking
ISBN: 978-1-84951-600-6 Paperback: 328 pages

Build a social or community website with friends
lists, groups, custom user profiles, and much more

1.	 Step-by-step instructions for putting together a
social networking site with Drupal 7

2.	 Customize your Drupal installation with
modules and themes to match the needs of
almost any social networking site

3.	 Allow users to collaborate and interact with
each other on your site

4.	 Requires no prior knowledge of Drupal or
PHP; but even experienced Drupal users will
find this book useful to modify an existing
installation into a social website

Joomla! Social Networking with
JomSocial
ISBN: 978-1-847199-56-0 Paperback: 184 pages

Learn how to develop a high quality social network
using JomSocial

1.	 Create and run your own social network with
Joomla! and JomSocial

2.	 Creating content for the social network and
integrating it with other Joomla! extensions

3.	 Community building and interactions

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	Foreword
	About the Author
	About the Author of 1st edition
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Social Networking and Elgg
	Social features
	Profiles
	Relationships
	Content sharing
	Activity and notifications
	Groups
	Communication

	What is Elgg?
	The Elgg engine
	User management
	Privacy controls
	Theming
	Commenting
	Tagging
	Widgets
	Internationalization
	Feeds
	Web services

	The power of plugins
	Bundled plugins
	Third-party plugins
	Themes
	Building your own plugins

	Case studies
	Niche social network
	Designing and building the site
	Deploying the site
	Plugins mentioned

	Corporate intranet
	Designing and building the site
	Deploying the site
	Plugins mentioned

	Educational collaboration
	Designing and building the site
	Deploying the site
	Plugins mentioned

	Elgg resources
	Elgg community
	Elgg wiki
	Developer resources

	A few words of advice
	Take notes
	Save resources
	Be methodical
	Finding help

	Summary

	Chapter 2:
Installing Elgg
	Preparing the server
	Checking requirements
	Downloading the latest version
	Extracting the files
	Moving files to your web server directory
	Configuring the server
	Create the database

	Run Elgg's installer
	Loading the database
	Configure Elgg
	Creating the admin account
	All done!

	Summary

	Chapter 3:
A Tour of Your First Elgg Site
	Getting around
	Registering users
	User profiles and avatars
	Profile information
	Avatar
	Profile widgets

	Friends
	Activity stream
	Tools
	Blogs
	Bookmarks
	Files
	Groups
	Pages
	Messages
	The wire

	User settings
	Your settings
	Tools
	Notifications

	Administration
	Activating plugins
	Site categories
	Custom profile fields
	Default widgets
	Site pages
	Reported content

	Customizing your site
	User registration and authentication
	Widgets
	Friendship model
	Roles
	Help and support

	Summary

	Chapter 4:
Sharing Content
	Blogs
	Creating a blog post
	Embedding photos and files
	Publishing

	Finding and viewing
	Search
	Lists of blog posts
	RSS feeds
	Widget

	Commenting
	Use cases
	Customizations

	Bookmarks
	Adding a bookmark
	Bookmarklet

	Viewing
	Use cases

	File
	Uploading a file
	Viewing
	Use cases
	Customizations

	The wire
	Posting
	Viewing
	Twitter integration
	Use cases
	Customizations

	Summary

	Chapter 5:
Communities, Collaboration, and Conversation
	Groups
	Creating a group
	Group profile
	Membership
	Discussion forum
	Group tools
	Finding groups
	Use cases
	Customizations

	Pages
	Creating pages
	Viewing
	Use cases
	Customizations

	Messages
	Inbox
	Composing
	Customizations

	Message board
	Customizations

	Summary

	Chapter 6:
Finding and Using Plugins
	Plugin administration
	Filtering and sorting
	Plugin dependencies
	Plugin settings

	Finding plugins
	Browsing the repository
	Searching
	Evaluating before downloading
	Look at the plugin overview
	Read the comments
	Check the history

	Custom plugins

	Installing plugins
	Test server
	Copying the code
	Activating and configuring
	Invalid plugin?

	Troubleshooting

	Themes
	Finding and installing themes
	Free themes

	Commercial themes
	Custom themes
	Installing themes

	Major community plugins
	Tidypics
	Plugin profile
	Administration
	Uploading photos
	Viewing photos
	Tagging photos

	Event calendar
	Plugin profile
	Administration
	Site calendar
	Group calendar

	Profile Manager
	Plugin profile
	Adding profile fields
	Configuring the profile fields
	Plugin settings

	Summary

	Chapter 7:
Creating Your First Plugin
	What you need to know
	Elgg developer resources
	Setting up your development environment
	Editing code
	Configuring your site

	Hello, World!
	Plugin skeleton
	Create your plugin directory
	Plugin manifest
	Start script
	Activating the hello world plugin

	Register for the init/system event
	Adding a new route
	Creating a web page
	Update routing
	Add to the site menu
	Extending the page handler
	Add a sidebar menu
	Language support
	Personalizing the content
	Organizing your content into views
	A greeting view
	A stats view

	Review

	Debugging
	Debugging to the log
	Debugging to the screen
	Debugging PHP through an IDE
	Firebug and other browser development tools
	Elgg developer tools
	Inspect
	Theming sandbox

	Summary

	Chapter 8:
Customization through Plugins
	Lesson 1: Changing wording
	Problem
	Solution
	Example
	Step 1: Create the plugin structure
	Step 2: Find the language strings
	Step 3: Override the language string

	Exercise

	Lesson 2: Modifying a section of a page
	Problem
	Solution
	Example
	Step 1: Find the view to override
	Step 2: Create the plugin structure
	Step 3: Edit the logo view
	Step 4: Style the header

	Exercise

	Lesson 3: Adding new content to a page
	Problem
	Solution
	Example
	Step 1: Find the view to extend
	Step 2: Create the plugin structure
	Step 3: Build our view
	Step 4: Make the tips random

	Exercise

	Lesson 4: Doing something when X happens
	Problem
	Solution
	Example
	Step 1: Find the event
	Step 2: Create the plugin structure
	Step 3: Write the function that sends the e-mail

	Exercise

	Lesson 5: Creating a custom widget
	Problem
	Solution
	Example
	Step 1: Create the plugin structure
	Step 2: Create the widget edit view
	Step 3: Create the widget content view

	Exercise

	Lesson 6: Giving your users options
	Problem
	Solution
	Example
	Step 1: Create the plugin structure
	Step 2: Add user settings
	Step 3: Create the toolbar view
	Step 4: Add CSS

	Exercise

	Lesson 7: Adding JavaScript
	Problem
	Solution
	Example
	Step 1: Create the plugin structure
	Step 2: Load the JavaScript file
	Step 3: Add CSS and JavaScript initialization

	Exercise

	Lesson 8: Changing how Elgg does X
	Problem
	Solution
	Example
	Step 1: Create the plugin structure
	Step 2: Create the index page
	Step 3: Define the views
	Step 4: Add the CSS
	Step 5: Add a plugin setting

	Exercise

	Lesson 9: Collecting and storing data
	Problem
	Solution
	Example
	Overview
	Step 1: Create the plugin structure
	Step 2: Create the main help page
	Step 3: Create the categories
	Step 4: Add an administration page
	Step 5: Create the form body
	Step 6: Create the save action
	Step 7: Create the help category page
	Step 8: Create the help object view
	Step 9: Add the help sidebar
	Step 10: Add CSS for the topic listing page
	Step 11: Finish the main help page

	Exercise

	Summary

	Chapter 9:
Theming Elgg
	What you need to know
	Theming basics
	Elgg's default theme
	HTML
	CSS
	JavaScript
	Graphics

	Views system
	What is a view?
	Extending a view
	Overriding a view
	Template language
	Caching
	The viewtype
	Tools

	CSS framework
	Creating abstractions of common visual patterns
	Customizing objects through extension classes

	Adding external JavaScript and CSS
	Menu system
	Registering a menu item
	Rendering a menu

	Comparing theming in WordPress to Elgg
	Building a theme
	Plugin structure
	Layout
	Default layout
	Page header
	Page body layout
	Page footer

	Moving the search box
	Styling the sidebar module
	Moving the site menu to the topbar

	Creating a mobile theme
	Plugin structure
	Layout
	CSS

	Summary

	Chapter 10:
Moving to Production
	Selecting a server
	Performance considerations
	Competing for resources
	Usage patterns
	General guidelines for server selection

	Hosting options
	Shared hosting
	Virtual Private Server
	Dedicated server
	Cloud hosting
	Hosting company selection

	Configuring a server
	Apache
	PHP
	MySQL
	Cron
	E-mail

	Managing the site
	Backup
	Code
	Database
	Files
	Server configuration
	Restoring

	Log rotation
	Spam
	Registration
	Detecting spammers

	Web analytics
	Daily tasks
	Monitoring user registration
	Reviewing reported content
	Responding to feedback
	Community management

	Testing, upgrading, and moving a site
	Testing
	Mirroring the production site
	Test plan

	Upgrading
	Moving a site

	Performance
	Benchmarking
	Monitoring and data collection
	Stress testing

	Easy performance gains
	Advanced performance tuning and scaling
	Caching
	Multiple servers
	Resources

	Reporting bugs
	Steps to reproduce the problem
	Elgg or plugin?
	Reporting the bug

	Summary

	Appendix A:
Developer's Quick
Start Guide
	Overview of Elgg as a framework
	What is Elgg?
	Object-oriented or procedural?
	Does it use the Model-View-Controller pattern?
	Convention or configuration?
	Is it extensible?
	What template engine is used?

	A Model-View-Controller perspective of Elgg
	Overview
	Controllers
	Model
	Views

	Routing
	Code location

	Actions
	Code location

	Page handlers
	Code location

	Framework booting
	Code location

	Data model
	Entities
	Type and subtype
	GUID
	Owner
	Container
	Access
	Database

	Relationships
	Extenders
	Database

	Retrieval functions
	Code location

	Views
	View templates
	Page shells and layout
	View type
	Overriding and extending views
	Special views
	Code location

	Events and hooks
	Elgg events
	Plugin hooks
	Code location

	Plugins
	Initialization
	Plugin order
	Conventions

	Themes
	Code location

	Activity stream
	Code location

	Notifications
	Code location

	Internationalization and localization
	Code location

	Lightning round
	Authentication
	Caching
	Configuration
	Debugging and logging
	JavaScript
	Menus
	Private settings
	Search
	Security
	Session handling
	Unit tests
	Web services
	Widgets

	Summary

	Appendix B:
Views Catalog
	Using views
	Page structure
	Shells
	Layouts
	Elements
	Topbar
	Header
	Sidebar
	Footer
	Owner block
	Status messages
	Comments
	Search box

	Components
	Gallery
	Image block
	List
	Module

	Navigation
	Breadcrumbs
	Pagination
	Menus
	Topbar menu
	Site menu
	Page menu
	Footer menu
	User hover menu
	Entity menu

	Tabs

	Forms
	Input
	Access
	Buttons
	Checkboxes
	Date
	Drop-down selector
	File upload
	Hidden input
	Large textarea
	Password
	Radio buttons
	Textbox
	User pickers

	Output
	Date
	E-mail address
	Link
	Tag cloud
	Tags
	Text

	The form

	Users, groups, and objects
	Activity stream
	Likes
	Like this
	List users

	Widgets
	Administration
	Summary

	Index

